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I. Abstract

The aim of this project was to construct a system to specify, play and solve games of Solitaire. The approach taken involved specifying states of play in terms of the collections of cards (piles) involved in each game, the rules associated with each pile and the cards within them at each point, in a way that could be manipulated automatically by a solver.

The system to solve games is based on the concept of building a tree of possible states from the root, moved through by a series of valid moves and eventually ending at a goal state (one in which all the required cards are on piles designated as goals). As states are moved through, the moves that lead to their possible child states are stored in a stack, allowing moves both from the current state and earlier states if the need to backtrack arises. Selection of moves from a state is done according to priorities laid out in the specification of the game.

Specification of games is handled through XML files, each of which contains the definitions and rules of the piles to be used, the cards to be dealt into them initially (whether fixed or random) and a few recommended strategies for solving a game, so that the search method used by the solver is more refined. The attributes used in the XML specification are extensive enough to make it possible to specify a variety of different games.
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III. Introduction
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[image: image1.png]The purpose of this project was to develop a system capable of reading specifications of Solitaire games and attempting to provide solutions to them. The class of Solitaire games specifiable are those in which the objective is to move a collection of cards one at a time into a set of goal piles (foundations), while adhering to the rules and restrictions imposed by each game.

The system produced to solve this problem represents games of Solitaire as a collection of piles, each containing a number of cards and holding information on the rules regarding the cards that can be taken from or added to the pile. These rules are held as a collection of integer values and booleans, and describe different aspects of each pile such as whether added cards need to be in a certain numerical sequence, restrictions on the suit of an added card, and so on. The game is won by moving all cards successfully to piles marked as foundations.

Playing through a Solitaire game involves moving through a set of states, each of which contains piles with the same rules but different contents. Most states have a number of different moves that can be made from them, making it necessary to perform a search through a tree of states to arrive at a solution. States are stored in a hash table as they are generated, for quick comparison and retrieval.

The solver searches through the path tree in a depth-first fashion, but prioritizes moves that are judged to be more likely to lead to an eventual solution. The actual types of moves that it prioritizes are specifiable by the user.

The Solver is invokable at any time during a game of Solitaire, and runs in its own thread so it can be cancelled if no visible progress is being made. Once the solver has stopped (whether as a result of arriving successfully at a solution or being interrupted earlier) it is possible to retrieve the path that it generated and view the moves it suggests, either step by step or from beginning to end.

The set of games playable by the program is not fixed, as all games are specified in external XML files interpretable by the system. These files contain information on the piles that exist in the game and the rules associated with them, along with the number of cards to deal to each pile (whether they are specific cards or random ones from the deck) and a set of recommended tactics for arriving at a solution. These tactics describe the types of moves to favour over others, such as moving cards to foundations, uncovering cards that will be needed later, or keeping free spaces available.

Computer-based Solitaire games have been commonplace for a number of years, and dedicated solvers for some variants of the game already exist. These solvers have varying degrees of success and flexibility. Details of some of the systems that have been developed in the past are given in the Context Survey section of Appendix A.

In its current state, the delivered application, named “Solitaire Specification, Simulation and Solution System”, is capable of solving a variety of games with reasonable reliability. It has been verified that it is possible to solve many types of Solitaire using this system, but it does not always arrive at the most optimal solution due to the depth-first search method used.

IV. Project Details

This section gives an overview of the main areas of the project, how they were written and how they operate. As the project was implemented, various changes to the original plans arose - these alterations are detailed here, with specific suggested changes to the actual text of the specification and plan given in Appendix D.

1. General Design
The project represents games of Solitaire as a collection of individual piles, each of which have their own rules and constraints as to which cards can be added or removed. The aim of each dealt game is to move cards between piles in such a way that will result in all cards being placed on foundations, at which point the game is solved.

There were three main areas of this project. The first was to create a system capable of handling the game mechanics themselves - enforcing the rules of each pile and ensuring that only valid moves could be made. The other two parts of the project relied on this system, and it was made early in the project but continually updated according to the needs of the solver and the specification language. In its first form, it had a command-line interface that offered simple interaction with the user, but this was later replaced with a more sophisticated GUI, which is detailed in its own section.

The solver was the second of the tasks to be started, and was based closely on the original command-line code for user interaction with the game. It makes moves by calling the same methods that would be used by a human attempting to solve the game, but has a different technique for storing its visited states - a tree has to be used rather than a simple linear chain due to the solver having to backtrack and consider a number of options.

Once the solver and game system were working, a specification language was worked on so that game details could be specified without hard-coding them into the program. An XML-based format was used for this task.

2. The Game System
Overview

The code that handles the rules of a Solitaire game is distributed between the Pile and State classes, with the Game class running the game in general and providing feedback to the user.

Cards form the basis for all Solitaire games. These are represented by instantiations of the Card class, each of which has a suit (from 0 to 3) and a value (from 1 to 14). Black suits are represented by even numbers, and red by odd - by using this representation it is simple to determine whether a card is of the same suit or colour as another mathematically. Cards are stored in piles.

Progress through games is represented by a collection of states (the State class). When a valid move is made, a copy of the current layout of cards and piles within the state is generated, with the moved card having been removed from the move’s source pile and added to its target. When a user plays through a game, this will create a linear path of states stored in memory, which can be revisited at any time.

Piles

When a game is started, the piles involved in it need to be interpreted from the XML file that specifies the game. Cards are arranged in an array within each instantiation of the class (the size of this array is specified in the external file), and each instantiation also holds a collection of properties that enforce the rules of the game. These properties reflect the attributes specifiable in the XML, a table for which is provided in its own section.

The largest responsibility of a Pile apart from holding cards is determining whether or not a certain card can be placed on or removed from it. Determining if a card can be removed from a pile is relatively simple, as a card cannot be removed if the pile’s “removable” attribute is set to False or there are no cards on the pile.

Deciding if a card is addable to a pile is more complex, as there are a large number of different properties that could prevent a card from being added. The check is done by running through a series of conditions in increasing order of complexity (so that as little processing time as possible is spent) that check the value and suit of the card to add against the rules specified for the pile. For the purposes of error reporting, the method that handles this check returns an empty string if the card can be added, and an explanation of why the card cannot be added if this is the case.

When the solver is running, piles frequently have to be checked against each other, and a variety of methods are provided for this. The first is named isEquivalent, and returns “true” if the properties of the two compared piles are the same. This method incorporates the equalsByContents method, which compares the contents of the two piles. It is important that when solving a game, memory and moves are not wasted on moving a card from one pile to another in which it will have exactly the same effect on the progress of a game.

CompareTo is the most in-depth method to compare piles, and provides a means of sorting piles, which is necessary for the efficiency of the solver. All properties and cards in each pile are iterated through, with a value from –1 to 1 being returned (the same as a standard CompareTo method) depending on which pile is deemed “greater than” the other.

States

In the same way that piles are collections of cards, states are collections of piles - these are represented in a LinkedList within a state. Each state also holds additional information such as a link to its parent, the move used to reach the state, and the state’s depth in the path tree. States are not literally stored as a tree data structure, but the collection of states can be moved through in tree form as each stored state has a reference to its parent.

States use the methods described above to determine whether cards can be moved between their piles or not - a valid move is one where the source pile’s top card is removable and the target pile will accept that card. FindValidMoves is the most significant method used by the game system, as it iterates through each pair of piles in the state and returns an array of moves that are valid. This list of moves is sorted according to the tactics that have been specified in the game’s XML file - the procedure for doing this is described in the Specification Language section.

There are also methods to compare states to each other - a feature that is needed to improve the efficiency of the solver, as it is undesirable for identical states to exist in the search tree. Their presence uses up memory, but in the worst case they could cause the solver to endlessly loop between two identical states.

Stock Piles

Stock piles have to be handled in a slightly different way from all other piles. These are the collections of cards that are not dealt to the tableau at the start of the game, but which can be dealt to the tableau as a move during the game’s progress. Stocks can either deal to a specific pile or the entire tableau.

Unlike other moves, a move from a stock pile does not have a specific target, as the target is determined by the piles to which the stock has to deal (these are specified in the properties of the other piles). The actual pile entered for the target of a move from a stock will be ignored - the solver always uses 0, and the card moved from the stock is set to a dummy card with value 0.

When a move is made from a stock, the system will search for the piles that identify themselves as targets for that stock and deal cards into them (the number of cards to deal is determined by the pile’s StockCapacity property).

3. The Solver
Initial Design
The solver was the main focus of the project, and went through a number of updates and changes. It works on the principle of expanding a tree of states from a given root by storing a stack of potential new states, examining them in turn and adding them to the solution path tree. It was first implemented at a very basic level, for which the procedure was as follows.

When the Solver was started, it began by iterating through each pile in the root state and using the other piles’ canAddCard method to verify whether a move could be made from them. Once a complete list of possible moves had been built up, the states that resulted from those moves were placed on a stack, and the top state was taken off.
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This state was added to the solution path tree, then the moves from the new state were retrieved and the child states from the new state were added to the stack. The next state was then retrieved from the stack and the cycle repeated. In the case that no valid moves were possible from a state, no new states would be placed on the stack, and the state taken off would instead be the result of moving from an earlier state - a backtrack in the tree. The solver continued either until a goal state was found (one in which all the cards were in foundations), the stack of new states was exhausted (no further moves were possible), or until the size of the tree exceeded acceptable memory bounds.

Once a solution was found, the solver reported the move list back to the user. In the event of no solution being found, either through running out of available moves or memory, the solver reported the path that brought it closest to the goal instead - i.e. the state with the greatest number of cards on foundation piles.

The tree was not stored in literal tree form as shown in the diagram, but instead as a LinkedList of states that each had a reference to their parent state.

Improving the Search
The above method is sufficient for very small tree search problems, but in Solitaire there are usually a large number of moves possible from any state, and when a naive search is used it produces a tree with a vast branching factor that is extremely inefficient to search through. Indeed, using the basic scheme described above it was rare for the program to be able to solve even simple games with reduced numbers of cards - its moves were chosen effectively at random.
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The first improvement made to the system was giving it the ability to examine the tree that had already been built up, and to discard a potential state if an identical state had already been visited. This prevented the solver from becoming caught in a loop of states with no progress being made.

The first version of this check was intended to be used only for small games with very few cards - it involved searching through the entire generated tree for matching states on each iteration. As the expected capability of the system grew, it was clear that the advantage gained by searching the tree in this way fell far short of outweighing the slowdown that it caused by comparing thousands of states each time.
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The problem was solved temporarily by rewriting the comparison method so that it only compared the potential new state to those that would be above it in the search tree. It did this by comparing the current state to its parent, then repeatedly replacing the parent with the state above it in the tree and comparing again. This greatly reduced the time taken to perform the check for each iteration, but for complex games with deep search trees, the amount of comparisons made was still significant.

Comparing states to states that had come before them only solved part of the problem. Perfectly identical states were being recognised, but in many variants of Solitaire it is possible to get many states that are effectively identical even though the cards are not in the same piles. For example, in Freecell, moving an Ace to any of the four blank foundations will result in identical states (as will moving a card to any of four free cells), but because the solver was only checking for states in which every pile was identical to its corresponding pile in the potential new state, these duplicates were not being recognised.

The concept of sorting states before storing them allowed the program to recognise effectively identical states. Using the previous method, piles with identical identification numbers were being compared against each other, but it was the actual contents of the piles that had to be recognised rather than the order in which they happened to be stored.

[image: image4.png]
Therefore, a sorting procedure that sorted the piles in a state based on their properties and contents was introduced to the system. When the procedure was run, the resultant sorted state would be seen as the same for all variants of the same effective state, even though the identification numbers of the piles did not necessarily match.

This reduced the size of the search tree and therefore increased the likelihood of solving a game even further, but it also introduced another slowdown into the system while the state was sorted (due to the comparatively small number of data items to sort, a selection sort is used for the procedure).

To offset the time complexity caused by the filtering procedures, a hash table is used rather than a simple continuous list of states. Once a state is sorted, a hash function is applied to it to get an integer value that identifies it, and this value is used for its position in the hash table. The hashing method combines the value of the bottom card of each pile (if any) with its suit, then bit-shifts the result left one space before repeating the process for each card in each pile of the state.

The formula for the hash value of a state is: 
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Effectively, this is the sum of unique integer values for each card in all piles, with each pile being multiplied by its ID value (achieved by bit-shifting left in the program). The unique integers for each card are generated by multiplying the suit by 14 (to separate it from the possible values of the value field) and then by the current value of j (the progress through the pile), to prevent piles with the same cards but in a different order from generating the same hash values.

With the addition of the hash table, searching the previous state is simply a matter of hashing the potential new state and adding it immediately if the corresponding space in the hash table is empty. If the value matches a value that is already in the hash table, it is still necessary to fully compare the states, as while the hash function produces values that are extremely unlikely to correspond to more than one unique state, this situation is not impossible.

To reduce the size of the search tree, it was also necessary to provide the program with some concept of which moves were most likely to lead it to a goal state. Initially this was done by hard-coding preferences into the program, such as giving priority to moves that placed cards on foundations or brought required cards closer to the front. However, due to the diverse nature of Solitaire games, it was decided that a less general approach needed to be used.

As an external specification language was already part of the project, the prioritization of moves was changed to be specific to each game, and the strategies for solving games provided in their files as a list of Tactic elements. These are read into the system by the interpreter, and are stored as an array of Strings in each state. On each examination of a state, the possible moves are reordered to reflect the preferences given in the game’s file, and are tried in order of priority.
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When a state is examined, the piles it contains are iterated through to determine the moves that can be made, according to the rules that restrict the circumstances in which cards can be added or removed from them. Once the entire list is built up, the program repeatedly extract moves that fulfil the next given tactic from the array and send them to a prioritized stack of moves. Moves that match no tactics are placed on the top of the stack. Once no moves remain on the original move list, it is replaced with the prioritized stack, which is then passed back to the Solver. The states that result from these moves are placed on the main state stack, therefore placing the best state at the top of the complete stack.

This approach also has the side effect of making the code more easily understood, removing the need to also prioritize moves in the method that finds all the possibilities from a state.

The future state stack is capped at one thousand states – if new states are added to the stack, the bottom of the stack is discarded to allow them to enter. This approach keeps a significant amount of memory free for the solution path tree, which often requires a large amount of space.

Discarding the states that exist at the bottom of the stack does not greatly hinder the solver, as states at the bottom of the stack are unlikely to be visited before the current path requires backtracking – each addition of states to the stack will provide states that are closer to the solution, and therefore more worthwhile exploring than states further back.

Move Suggester
To complement the Solver, a “Suggest” feature is provided in the user interface. When activated, this will provide a list of possible moves from the current state, ordered in the same way that the Solver would attempt them, to assist in finding valid moves without attempting to actually solve the game itself.

Compared to using the solver, it is unlikely that repeatedly using the first suggested move will arrive at a solution, because it is in essence a greedy search that cannot backtrack - the move deemed the best to get from the current state to another is chosen each time, with no consideration of what this may affect in subsequent states.

Use of the Solver

The Solver class is invokable from the graphical user interface at any point during a game, and runs in a separate thread so that it can be cancelled if no progress is being made. The solution path (either complete or partial) found by the solver can be transferred into the main solution path list by using the Retrieve button.

4. The Specification Language
Initial Design
From early on in the coding of the project, it was known that a way of specifying games from an external file would have to be included. Even when the program could only cope with Freecell, it was written as a collection of Pile classes that were set up at the beginning of the Main class, rather than hard-coded into the game itself. The first task in implementing the specification language was removing this initial set-up section and transferring the code into an external file.

XML was chosen as the format for the external game file, due to the way that Java classes for interpreting files of this type were readily available. Some limited experience of the format had also been gained during the Junior Honours Project the previous year.

The XML file initially consisted of only a root Game element that encapsulated a list of Pile elements, each of which had its properties described as attributes. An Interpreter class was written to read this file and convert the described properties into Pile classes for use in the game. More details on the Interpreter class and how it parses the XML are provided in the section below.

With this initial implementation of the specification language, all cards were dealt into piles that were flagged as part of the tableau at the start of the game. While sufficient for the Freecell game that was initially used to test the capabilities of the project, it quickly became clear that the specification language had to be extended in order to handle other Solitaires.

Improving the Specification Language
The capabilities of the XML file and the interpreter itself were continually updated as the project grew. One of the first difficulties encountered was when specifying the game “Black Hole”
, in which a specific card had to be dealt to the central foundation before play began. (Strictly speaking, the card dealt to this pile does not affect the progress or solvability of the game, but many descriptions of the rules specify it as the Ace of Spades).

The capability to place specific cards on to piles was implemented by using a list of “card” elements, encapsulated by a “fixedcards” element. Each of the card elements specifies a pile along with a value and a suit for the card to place. When the XML file is interpreted, the interpreter removes the cards corresponding to the given values and suits from the pack so that they are not also dealt to the tableau later on, and places the cards on the specified piles. As the dealCard method is used rather than addCard, it is possible to place cards that would not normally be accepted on the given piles.

The list of attributes expected by the Pile elements themselves also had to be updated as the number of specifiable games needed to be extended. There are two types of property that have to be specified - most of the attributes refer to rules that the pile should follow, but it is also necessary to consider how the pile should be displayed on-screen. The list of properties recognised by the interpreter is as follows:

Game Properties
	Type
	Name
	Description
	Def.

	Int
	Id
	The identification number of the pile.
	0

	Int
	Capacity
	The maximum number of cards to be accepted on the pile (the size of the array that describes the pile’s contents). The default is set to 52 to impose no restriction.
	52

	Int
	Order
	The sequence in which cards must be laid. The most common is –1, which indicates that cards must be placed in descending order on the pile. A value of 0 implies no order restriction.
	0

	Int
	Uniquesuit
	Used only rarely (and usually on foundation piles), this attribute restricts a pile to holding only one suit of card (0 to 3, or -1 if there is no restriction).
	-1

	Boolean
	Alternatecolours
	If this is set to true, cards must be laid on top of each other in alternate colours on this pile (as in Klondike and Freecell).
	False

	Boolean
	Samesuit
	Cards on this pile must be all of the same suit. This is similar to the “uniquesuit” attribute, but does not impose a restriction on which specific suit the cards belong to.
	False

	Boolean
	Addable
	Cards can be added to this pile. Most piles in the tableau and foundations should have this set to “true” – if it is false, no cards can be added to the pile regardless of other restrictions.
	False

	Boolean
	Removable
	Cards can be removed from this pile. This is usually set to true for all piles except foundations and stocks.
	False

	Boolean
	IsFoundation
	The pile is a foundation – a goal pile for cards.
	False

	Boolean
	Fourteen
	When the number of cards on the pile is even, the sum of their values must be a multiple of fourteen.
	False

	Boolean
	IsStock
	The pile is a stock pile – special properties apply to this pile that make moves from it deal into specific piles.
	False

	Int
	StockCapacity
	The number of cards to remove from a Stock pile when a move is made from it. This property is ignored if IsStock is set to false.
	0

	Int
	StockNumber
	The ID number of the stock pile that deals into this pile, if any (-1 if there is none).
	-1

	Int
	StartValue
	The value that a card must be to be placed on this pile when no other cards are on it (again, 0 implies no restriction). This is often set to 0 or 13 (King) for the tableau, and 1 (Ace) for foundations.
	0

	Boolean
	OneAway
	This is a property that was written specifically for Black Hole, in which sequential cards must have a value that is one away from the previous card in either direction (with wrapping between Aces and Kings allowed). If this property is set, order should be set at 0.
	False

	Boolean
	OneAwayNoWrap
	The same as the above, but with wrapping disallowed.
	False

	Int
	CardsToDeal
	The number of cards to deal into this pile at the start of a game (different from the FixedCards specified later on, as these will be cards dealt at random from the deck).
	0

	Boolean
	BuryKings
	This is a unique attribute in that is does not set a property of the Pile class - instead, setting it to True indicates that when cards are dealt, any cards of rank King should be sent to the back of the pile. This information is not stored in the Pile itself because it is unnecessary to refer to it again once the dealing phase is over.
	False


Display Properties
	Type
	Name
	Description
	Def.

	Int
	DisplayX
	The X co-ordinate for the location to start the pile on-screen.
	0

	Int
	DisplayY
	The Y co-ordinate for the location to start the pile on-screen.
	0

	Boolean
	Straightstack
	This property affects how the cards in the pile are displayed – if it is set to False, all the cards in the stack will be displayed in sequence (unless the pile has over 30 cards – in this case, only the top 30 are shown, as this is the maximum number that will fit in the window). If true, the pile will only ever show its top card. This behaviour is useful for foundations.
	False

	Boolean
	Backwards
	Intended for use with games that build foundations in two directions (such as Bisley). Setting this property to “true” makes the GUI draw the pile from the bottom up instead of top-down.
	False


As can be seen from the length of the above tables, the list of required attributes grew unmanageably large very quickly. This made the specification files long, with the result that they were difficult to read and modify.

To solve this problem, the way that the program interpreted the XML file was changed, with individual methods being written that could attempt to read named attributes from the specified file (one for booleans, the other for integer values). If the required attributes are not found, default values are applied to them rather than simply reporting a failure to read the file.

This modification to the way the program handled the files dramatically reduced the required size of the game specifications, making them much more readable in the process.

The final change to the expected format of the specification files was giving them the responsibility of providing general strategies for solving the game, and these strategies were detailed in the Solver section above.

Interpreting the Specification Language
The system uses classes from the DOM (Document Object Model) package to interpret XML files. The path and filename of an XML files are passed to the Interpreter class, which sets up a blank state that will become the root state of the game.

The first stage is to get the name of the game and the number of decks to be used from the Game element in the file, and then to interpret the properties of each specified Pile in the way described above. For each Pile element, a new Pile is created with matching attributes and added to the state.

After the piles have been created, the Tactics element is examined. This element contains a list of “tactic” elements, which have “name” attributes that give the names of the strategies that are recommended for use in solving the game. These tactics should be provided in order of importance, as they are read sequentially and stored in the root state for later use by the solver. The interpreter then begins dealing out the cards.

A standard deck of cards is created, then the interpreter checks for any cards that have to be dealt to specific piles. If any are found, then it creates new Card objects that have the required properties and places them into a list of cards that will be removed from the standard pack. This is necessary to ensure that a duplicate of a card will not be dealt to the tableau if it is already dealt to a specific pile.

After the pack has had the dealt cards removed from it, the remaining cards are shuffled by repeatedly exchanging cards between two positions chosen at random. The exact number of exchanges is not hard-coded into the method itself, but five hundred is used by the program. Once this has been done, the stock piles are filled to capacity.

Finally, the remaining cards are dealt to the tableau – the program iterates through the state again and places the required number of cards on each pile (specified in the “cardstodeal” attribute of the XML file). If too many cards are required, a NullPointerException will be thrown, and caught at the end of the interpreter.

The last stage that the interpreter performs is finding the identification numbers of the piles that are foundations. Keeping these values in an array in each state speeds up the search procedure, as it is often necessary to check the contents of these piles.

The completed root state is then returned by the interpreter, and the game can begin.

5. Graphical User Interface
[image: image14.png]
Rough ideas of a graphical user interface were proposed in the Project Plan, as laying out the cards graphically is the only feasible way to provide a clear view of the state of a card game to the user. It was decided that to avoid time being taken from the main aspects of the project (such as the search and interpretation) the interface would be kept simple, rather than attempting to duplicate the layout of physical cards on a desktop.
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Instead, a representation similar to the alternative outlined in the Plan has been implemented, with the only significant difference being that piles are drawn from the top down instead of the bottom up. (Cards in Solitaire are usually laid out in a fan so that the playable card appears the lowest, despite it being physically the top card on the pile.)

As an alternative to this layout, a “Card View” option has been provided that, when selected, gives a graphical representation that more closely resembles realistic cards. This was not intended to be the default view, however, and can appear crowded if used in games involving many decks or piles - it was included as an extra feature at the end of the project’s development.

The layout of the user interface is managed by the AbsoluteLayout and AbsoluteConstraints classes, which are not original work but are used in accordance with the Sun Public Licence
.

The main area of the user interface is the Desktop on which representations of piles and cards are placed, and user controls are provided for interacting with it. The Desktop class itself provides the means of drawing out the cards in piles - a pile is shown as a series of JLabels starting with a label that indicates the pile number, and the cards are drawn by calling their getCardLabel methods, which return the relevant character together with an image to represent the card’s suit.

The user can either make moves by entering them manually, or by using the Suggest feature mentioned above and selecting a valid move from the resultant list in the combo box. The Solver is invoked from the user interface by pressing the Solve button - this passes the current state and a user-specified depth limit to the solver.

The solver runs in its own thread, and can be cancelled with the Cancel button at any time if no progress is being made. The solution list, whether complete or partial, can be copied to the main window by pressing the Retrieve button, and this fills the solution path list on the right hand side.

As moves are made by the user (or returned from the solver), this list updates with the moves made so far in the game. By pressing the buttons beneath the list it is possible to go back to the beginning of the game, back or forward a state, or to play the entire solution list out from the selected point forwards. Even if moves are undone by the user, the entire list is retained unless a move is made that conflicts with the next move on the list.

The user can also instruct the program to restart or redeal a game. “Restart” acts in the same way as returning to the start of the solution list, but it discards the solution path as well. “Redeal” has the same effect, but redeals the cards at random, producing a new variant of the same game. The “Open” option, to open a different specified game, uses the same method as Redeal but changes the XML file to be interpreted before doing so.

V. Evaluation & Critical Appraisal

1. General Evaluation
The overall success of the project can be summarized by examining the evaluations of the Objectives and Requirements below. The level 1 and 2 objectives and requirements (those which were considered essential and desirable) have all been achieved in some form.

The only aim of the project that was not fulfilled was that of handling non-open games, where the complete layout of the game is not known at the beginning. This property can be simulated from the user’s point of view by designating piles as straight stacks in the XML file, so that only the bottom card is visible in each pile. However, the solution system will have the complete layout of the game available to it no matter whether this property is set or not.

It is also debatable whether the display of cards matches the “layout of cards on a desktop”. Even though it was not an essential requirement, an attempt has been made at this and included as an additional feature that can be activated by the user (it was deemed to appear too crowded to be the default view). While the display of cards was not a main focus of the project, the default view of cards is adequate to show the user the state of a game.

An examination of the project’s actual ability to solve various Solitaire games is provided in the Solver Evaluation.

2. Objectives Evaluation
The objectives of the project were laid out in the Requirements Specification and Plan, delivered during the previous semester (objectives can be found on page 33). This section contains commentaries on their status in the finished system, and any objectives that are regarded to have not been completed are marked in italics.

Level 1 Objectives
A system that can simulate a variety of open Solitaire card games has been created, covering the needs for the first Level 1 objective.

The solver will either report a solution if one can be found, or the path that brings it closest to the solution if no path to a goal is apparent (whether this is as a result of running out of memory or determining that the deal is impossible). The solvability of games can be assessed by performing multiple runs of random deals.

An evaluation of the project is provided in the Evaluation section of this report, with a more in-depth examination of the solver in its own section.

Level 2 Objective
A specification language has been implemented in the form of a format for XML files. By constructing XML files using this schema, it is possible to specify Solitaire games to be playable by the program. This objective has therefore been achieved.

Level 3 Objective
The system has no support for non-open games. However, this was a Level 3 objective and was not considered essential to the completion of the project.
3. Requirements Evaluation
Again, requirements that are regarded as having not been met are marked in italics. Each of the high-level requirements have been met in some way, with only one low-priority requirement having not been fulfilled. In summary, the system meets all of its essential and desirable requirements.

The original requirements list can be found on page 41.

The Card Game System
1.1 
A system that can handle the movement of card objects between piles has been implemented.

1.2 
The system correctly recognises and reports on invalid moves.

1.3
The system recognises when a goal state has been achieved - a goal state is considered one in which all the cards are in piles that are marked as foundations.

1.4
A GUI that presents the layout of the current state of play to the user has been implemented.

1.5
The solution system can be started at any point through the game via the user interface.

1.6
States of play are stored in memory as instantiations of the State class.

1.7
The interface allows the manual movement of cards in two ways - by specifying the source and target piles manually, or selecting from a list of possible moves provided with the Suggest feature. While not as intuitive as many other Solitaire implementations, the method is functional.

1.8
The Game class calls the Interpreter when a game is dealt to determine the rules and initial state of a game specified in an external XML file.

1.9
The graphical user interface is recognisably similar to the layout of cards in a real game. An attempt is made to show the appearance of cards as they would be on a desktop.

1.10
An Undo feature has been provided in the form of the controls that manipulate the solution list on the right of the desktop.

1.11 
Non-open game support has not been implemented.
The Solution System
2.1
The system takes in the state passed to it and follows all constraints to which a manual player would be subject.

2.2
The solver will continue to iterate through the possible move list until a solution is found, the move list is exhausted, or memory has been exhausted. All constraints relating to piles are followed.
2.2
The solution path is added to the solution list when the solver has completed a solution. In addition, if no solution is found, the solver will instead report the path that brought it closest to the goal.

2.3
The system recognises when a goal state has been reached by stopping when all cards in the game are on foundation piles.

2.4
Tactics recommended by the user are used to assist the decision making process, allowing the system to make reasonably intelligent choices that are likely to lead to a goal state.

2.5
Repeated states are avoided (both truly repeated states and effectively repeated states) by the use of a hash table and sorting function.

2.6
The program will run out of available moves if no solution is available from the current state (as long as memory is not filled before all possibilities are exhausted).

2.7
A way of stepping through solution paths in the GUI has been provided - either one step at a time or by playing the entire path from start to finish.

The Specification Language
3.1 
The number of piles and their behaviour are fully specifiable by constructing XML files to be interpreted by the system.

3.2 
The method by which games are specified is determined by an expected XML schema, which could be said to be a specification language.

3.3 
The specification language is in the form of XML files, as suggested by the original requirement.

4. Solver Evaluation

To show the solver’s efficiency and likelihood of generating a complete solution path, the solver was run multiple times on various games and, in some cases, using different strategies to compare their effectiveness.

There are three possible outcomes for the solver: Completing a solution path successfully, running out of possible moves (therefore concluding that a game is unsolvable), and running out of memory. The third of these is the only outcome that should be counted as a failure to solve a game.

All games were run with a depth bound of 500 and a maximum move stack length of 1000, unless otherwise stated. The results from each set of testing, along with details of the strategies used, are detailed in Appendix F.

Freecell

This was one of the first games that the program was intended to solve, and therefore strategies for solving this type of game were built in from very early on in the project. It involves beginning with a tableau of eight piles of seven or six cards, and building from Ace to King on each of four foundations. Cards can be moved to or from any of four cells (each of which can hold one card at a time), or between piles in the tableau as long as they are in alternating colours and descending numerical order. It is an example of a game with many possible moves from each state, resulting in a path tree with a high branching factor.

34 out of 50 games were solved. No games ended in the solver concluding that no solution was possible.

The absolute solvability of Freecell is extremely close to 100% with perfect play.
 However, some sources
 estimate that there is only a 33% likelihood that a random deal of Freecell can be solved by the average player. (However, the success rate of a player who is considered “average” is difficult to define without a study of the ability of humans to complete the same games as the solver, and this was outwith the scope of this project.) While it did not solve all games that it was provided with, the solver easily surpasses the given figure, as 68% of the games run were solved successfully.

Almost without exception, the solver could only place a few cards on foundations in the games that were not solved - 17 was the normal maximum. One exception was a game that was not solved despite 31 cards being put up to the foundations. This was because too many cards of one colour were removed from the tableau, making movement of the remaining cards impossible as similar colours could not be placed together. This difficulty could be solved by writing a more specialized tactic to replace “movetofoundations”, which was used in the testing.

Black Hole

Black Hole is an example of a game with a much lower branching factor than Freecell. Cards must be placed on the “Black Hole”, a foundation beginning with the Ace of Spades, building either upwards or downwards numerically (changing direction as necessary) and ignoring suit. A maximum of eight possible moves will be available at one time.

While chance is an important factor in Black Hole (many more deals than in Freecell will be impossible), there are certain strategies that assist in solving it, such as uncovering new cards rather than freeing spaces. This is a very different strategy from the one recommended for Freecell.

Because Black Hole involves only one continuous foundation, it is possible to place cards on it sequentially in a way that prevents a solvable game from being solved. If all cards of value six and eight have been placed on the foundation and the current card is not one of these values, any remaining sevens will be impossible to remove from the tableau.

Preventing situations like these relies on being able to look ahead at the contents of many piles, but the strategy can be approximated by encouraging the solver to attempt to keep moving in the same direction when placing cards on the foundation.

The first set of runs of the solver prioritized moves leading in the same direction first, then moves that did not leave empty piles. The second set used the same tactics, but in reverse.

During the first run, 13 out of 50 games were solved, with 6 games being recognized as unsolvable.

During the second run, only 4 out of 50 games were solved, and a further 7 were unsolvable.

Assuming that the solvability of the game over fifty random deals remained approximately the same, it can be seen that giving preference to moves that lead in the same direction from previous ones is a superior tactic to simply attempting to uncover more cards on every move. It also shows the importance of prioritizing certain moves in order to assist the solver in producing a successful solution.

Black Hole has an 87% chance of being solvable with perfect play
, but this figure is not reflected in the results given by the solver. However, in both cases, around 13% of games were found to be unsolvable – this suggests that the system can competently find when games are impossible to solve, but is not able to completely reliably provide a solution for when games are solvable. One potential solution to this problem is attempting the test again with different tactics, so that different moves are explored. Another is simply increasing the memory available to the program (or improving the efficiency with which states are stored) to allow the exploration of a larger section of the path tree.

Other Games

To assess the quality of the solver on a wide variety of games, a version of the solver that automatically recorded its results was coded. A number of games provided with the delivered system were run one hundred times each so that an average performance measure for each could be observed.

	Name
	Features
	Solved
	Impossible
	?
	Avg Moves

	Colourblind Fortress
	
	100
	0
	0
	102.6

	Fortress
	
	24
	76
	0
	108.6

	Block Fourteen
	Single foundation
	80
	0
	20
	52

	Freestack
	
	90
	0
	10
	68.9

	Aramis
	Stock
	6
	0
	94
	123.5

	Auld Lang Syne
	Stock
	0
	12
	88
	0

	Baker's Dozen
	
	1
	98
	1
	73

	Bisley
	Split foundations
	13
	3
	84
	102

	Beleaguered Castle
	
	36
	39
	25
	218.8

	Brigade
	Reserve piles
	53
	0
	47
	136.3

	Castles In Spain
	
	46
	6
	48
	503.1

	Triple Freecell
	Large game (3 decks)
	57
	0
	43
	342.1

	Easy Freecell
	
	96
	1
	3
	103.8

	Eight Off
	
	97
	0
	3
	105.5

	Golf
	Stock

Single foundation
	0
	11
	89
	0

	Golf (Wrapping)
	Stock

Single foundation
	24
	0
	76
	51

	Scotch Patience
	
	80
	0
	20
	68.9

	Somerset
	
	29
	50
	21
	219.4

	King Albert
	Reserve
	26
	30
	44
	145.7

	Shamrocks
	
	70
	15
	15
	68.9

	Good Measure
	
	18
	5
	77
	105.5


In total, discounting the almost certainly solvable Colourblind Fortress and Easy Freecell, the solver successfully reached a goal state 39% of the deals with which it was provided and concluded that 18% were unsolvable, giving conclusive results for a total of 57% of games. The solvability of the remaining 43% of games was left undetermined, as the solver ran out of memory during their examination.

The solver appeared to be most successful in games with low branching factors where only a few moves were possible, such as Fortress and Block Fourteen. This is understandable, as with fewer possible moves, there is a greater possibility that the entire path tree will be explored before memory limits are encountered.

Conversely, if a sufficiently large number of moves are allowed (as in Colourblind Fortress and Easy Freecell), the solver will easily be able to discover a solution due to the large number of routes to the solution that are available.

Improvement of the discovered figures may be achieved by providing the solver with better tactics for solving the games, or improving the efficiency with which states are stored in memory to prevent Out of Memory exceptions from arising.

5. Comparison with the Public Domain
This section compares the developed system with similar work that has already been carried out, and explains the advantages and drawbacks that each system has over others.

SolSuite

SolSuite is a large collection of Solitaire games, and offers two main methods of assisting the user in solving them – an “Auto” feature and a move suggester.

The “Auto” feature (which is only available for certain games) automatically places cards on foundations when it is safe to do so, in a way similar to that used by the version of Freecell provided with Windows. While no exploration beyond the current state is needed by this feature, the evaluation of the safety of removing cards from the tableau is the most important aspect. The project may be assisted by an analysis of “safe” cards such as this, whether written as a separate part of the system or as additional tactics.

[image: image16.png]The move suggester in SolSuite is basic, and appears to offer little regard for strategy – pressing the “M” key cycles through a display of possible moves on the screen in the order that they are found. This may be helpful for highlighting moves to verify that there are possible moves from the current state, but there is no guarantee that using a suggested move will lead any closer to the solution. There is also the issue that the user has to memorize the moves as they are cycled through, as no complete summary of the available moves is displayed on the screen.

The playable games in SolSuite are coded into the program, but the user is provided with the ability to modify their rules in a limited fashion – for example, by changing the building rules on foundations or the tableau. While not as flexible as the approach used for this project, it is likely to be suitable for the casual user.

SolSuite also offers a system to keep track of the number of games of each variant won and lost – comparing these statistics may provide some impression as to the solvability of each game, but the results will rely largely on the ability of the player.
PySol

[image: image17.png]PySol is a Solitaire suite written in the Python scripting language, and like SolSuite, provides a large library of playable variants (about 200 in this case). Interestingly, these include games that use completely different card decks from those in standard Solitaire, including one numbered in hexadecimal. Games are specified in individual modules of code, and the collection is open-source, so games can be added by writing new code to accommodate them.

The facilities provided for solving games are also similar to those of SolSuite. Along with the familiar “Auto” feature, there is a “demo” mode where the computer attempts to solve a game on its own. It appears to do this in a similar way to the project – moves are made according to certain priorities until a state is reached where no moves can be made. However, the program has no ability to backtrack through states if such a state is reached – it misleadingly reports that the game cannot be solved. As the moves are prioritized, this feature usually results in a state that is at least close to the goal state, but it does not guarantee that the best route will be taken.

Freecell Solver

Freecell Solver is not a Solitaire suite itself, but a program that is intended to take in a known Freecell (or variant) state and provide a solution path. It has been implemented in various Freecell frontends.

The basic operation of the solver appears similar to the strategy that was adopted for this project, using a state stack - a state is taken from the top of the stack and replaced with its possible child states (if they do not match ones that already exist in it). In this way, a tree of states is effectively explored without the need to keep the visited states in a store (however, this implementation does not guard against identical states existing on separate paths of the tree).

The solver is much more efficient at providing the solutions to Freecell than this project - according to test results, it approaches the 99.999% mathematical solvability of the game. However, it is a very specialized solver, and while it has been extended to be able to solve games with similar rules (such as Beleaguered Castle and Eight Off), its expandability relies on new code being provided rather than game specifications being passed to it as for this system.

VI. Conclusions

1. Suitability for Purpose

The system performs its intended functionality - a variety of Solitaire games can be specified and solved, though the solver is more successful with some types of games than others.

The delivered application is capable of reading a specification of a Solitaire game (around 40 of which are provided), allowing the user to play through it according to the game’s rules, and attempt to solve deals of each game by expanding a tree from the given state. The essential and desirable objectives and requirements have been achieved, making the project successful and suitable for its intended purpose.

There are a few shortcomings - it is not certain that the system will report whether a game is definitely solvable or unsolvable, as either memory restrictions or badly chosen moves can hinder the system’s progress. However, it is believed that the system can assist in the process of determining the solvability of games, as indicated in the original problem definition. The progress that the system makes through a number of different deals of the same game can be taken to indicate the ease with which a game can be solved, provided reasonable tactics are provided to the system.

2. Known Problems
Perhaps the most significant omission from the project at this stage is the capability to handle games that involve the movement of piles of cards rather than individual ones. For example, in the familiar Klondike, sequences of cards can be moved if they are in decreasing sequential order and of alternate colours. It was decided to leave this capability out of the system because it would have vastly increased the requirements of the solver - with many Solitaire games resulting in a high branching factor already, allowing multiple styles of move from the same pile may have placed many games outside the solver’s capability.

While the solver is competent at solving a variety of Solitaire games, it does not guarantee that it will find a solution if there is one available. It is also apparent that in games that involve many piles, memory runs out very quickly - to prevent this, a more efficient method of storing states in memory would have to be considered.

3. Future Development
The obvious direction in which to take the project is to allow it to specify a greater variety of games, and providing support for solving them. This may be by changing the system significantly (for example, to allow collections of cards to be moved, or games in which redeals are permitted), or by simply adding attributes to the Pile class to allow specific rules to be handled. Many games have unique rules that were not anticipated at the beginning of this project, such as having moves that are made automatically under certain conditions.

While the ease of understanding of the XML files themselves was increased by only necessitating inclusion of the attributes that have to be changed from their defaults, editing game files can still prove awkward. A particular difficulty is specifying the X and Y co-ordinates at which a pile should be displayed on-screen, and visualizing the layout of a game as it is being constructed. Often, a file has to be edited multiple times before the desired layout is achieved.

Therefore, it may assist the user if a separate program is developed to handle the specification of Solitaire games, and to allow it to write the XML file after the user lays out the required piles and rules through a graphical user interface. This would eliminate the need to edit the file directly, and would provide a clearer image of the game to the user as it is being constructed.

Appendix A: Project Specification and Plan 

The content of this appendix is identical to the document handed in at the beginning of the project, with some formatting changes made to make it consistent with the rest of the report.
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Project Specification

I. Problem Definition

The terms “Patience” and “Solitaire” can apply to a large number of card games for one player. Some of them have very different characteristics, but all of them involve the aim of arranging cards into a certain order under rules that restrict the free movement of cards – for example, only allowing certain numbers or colours of cards to be stacked on top of each other. A number of Solitaire versions for computers exist, and these games have previously been used in the field of AI because of being a common problem.

Solving techniques for Solitaire are not usually studied, and the large number of variants of the game prohibits the creation of a general technique for solving all the versions. Because of this, a variety of different AI approaches to solving constraint problems have to be considered, some of which will work better than others on certain games.

The aim of this project is to implement a search engine that is capable of finding solutions to a number of different types of Solitaire games. To do this, it will be necessary to perform a heuristic search given the layout of the cards in the game, and to find the line of behaviour through the path tree that leads to the provided goal state. Formulating strategies such as performing certain types of moves first would be an advantage in arriving at a solution more quickly.

In this way, the program should be able to determine the solvability of a Solitaire game given the game’s constraints and the initial state (either the start of a game or a position during the game), and to provide the sequence of moves that lead to the goal state.

The varieties of Solitaire games number in the hundreds. It is also possible to create new variants by altering the rules of existing games in some simple way. Because of the wide range of possibilities, a method to specify the layout and rules of a particular game would be the most efficient way to allow the system to solve a number of different types of games. As well as extending the functionality of the system, this would also be useful for designing new Solitaire problems and determining if they have a reasonable level of solvability.

It would be simpler at first to handle games in which the entire position is known at the start (“open” games, where no cards are face down), but it may also be possible to handle non-open games. These would again require different solving techniques, as information on the future state of the game would be much more limited.
II. Objectives

These objectives have been classified in order of importance. The Level 1 objectives are those that are essential to the completion and functionality of the system. The features indicated by the Level 2 objectives would extend the system’s functionality, but would not prevent the system from functioning correctly if they were incomplete. The Level 3 objectives are those that are considered optional, but would be advantageous if they were featured in the completed system.

Level 1 Objectives
To have a system that can simulate a variety of open Solitaire card games (either by creating a new system or by building on an existing one).

To enable the computer to determine the solvability of a game from a given state via a heuristic search and constraint programming.

To evaluate the results of this project with respect to functionality and usability.

Level 2 Objectives
To create a specification language for Solitaire card games so that the system is capable of providing solutions to as wide a range of them as possible.

Level 3 Objectives
To extend the system to handle non-open games.
III. Breakdown of Objectives

The system will need to be comprised of a number of components that can pass data between each other.

Card Game System
This is the part of the system that will handle the layout and movement of cards in a game. Solitaire games are primarily based on cards arranged in piles. For each move, a card (or, in some cases, a whole portion of a pile) can be moved from one pile to another, depending on rules laid out for that game - most games require cards to be ordered in some sequence, or in alternating colours.

The most appropriate method for recording the locations of cards is the use of stack data structures - these reflect the way that the cards are laid out in the game, as only the top of each pile of cards can be moved. The movement of a portion of a stack does not conform exactly to the concept of a stack, but this portion could be considered a stack in itself during its movement.

Not all elements in Solitaire games are stacks like these, but many of them can be represented in similar ways - some games introduce elements such as free cells (which may be considered stacks with a limit of one card), or a pool of cards that the player can choose from freely, as in Klondike. This could be represented as two stacks, one of which empties into the other. By providing a variety of different types of card pile, it should be possible to emulate a wide range of Solitaire games.

It will also be necessary to provide a graphical user interface for this part of the system - ideally, this should resemble the card game as played on a desktop as closely as possible, but other representations may also be considered, such as showing stacks of cards building upwards - while not as intuitive, this visualisation matches the proposed internal data structure more closely.

If it is not feasible to create a system that models Solitaire in this way, it may be possible to write the remainder of the project around an existing system - a variety of open source Solitaire simulators exist, and these are discussed in the Context Survey section.

Game Solving System
The part of the system for solving Solitaire games will need to examine the state of the game passed to it along with the set of constraints or game rules, and explore the possible moves from that position with the aim of reaching a goal state (which also needs to be provided).

The search through the possibilities can be represented as a tree, with states that are reached from the initial state being linked to nodes underneath the root. In most Solitaire games it will be possible to repeatedly visit two states by moving the same card back and forwards, so measures must be taken to stop this (for example, not allowing the same state to be visited in any one branch of the tree).

Characteristics of certain games may affect the most efficient method of solving them. In order for the search to be as efficient as possible, heuristic rules can be used to determine the path that is most likely to lead to a solution.

Once a path to the goal state has been found (or all possibilities have been exhausted), this part of the program should be able to report the path that was taken through the state tree back to the user, therefore supplying the solution to the game as a list of moves to be carried out from the position that was given.

In the case of non-open card games, it would be possible for the computer to examine the locations of face-down cards to provide a solution more quickly, but as a player cannot do this normally it may be regarded as too unrealistic a way of solving a game.
Card Game Specification Language
The properties of the method of specifying a game of solitaire will be limited by the features that are present in the system for simulating card games - particularly the data structures used and how they are handled.

The system should be open-ended enough so that specific data structures for each game do not have to be written in to the card game system itself, but instead can be specified as variants of existing ones - for example, as mentioned above, a free cell could be a stack of one card that has no restrictions as to the card that can be placed at the bottom of the stack.

It should be possible to provide information on the data that can be held in individual stacks, such as the restrictions on cards that a stack accepts and any size limitations. Information that determines the way a stack is presented should also be provided, such as the location of its base on the screen.

Solitaire games as a whole have very different rules, and there must also be a way of specifying the general restrictions on the movement of cards as well as supplying the initial and goal states.

For the specifications to be as readable by the program as possible, the method for specifying a Solitaire game should be in XML or similar format - an XML schema could then be used to constrain the details of the specifications to acceptable values.
IV. Context Survey

Solitaire

Solitaire games involve arranging a set of randomly ordered cards into a goal arrangement while conforming to the constraints that are set down according to the particular game being played.

Despite the large number of variants of the game, certain features and layouts are common to many of them. Many games involve an array of ordered piles, between which cards can be moved (either as ordered groups, single cards or any group). This collection of piles is the tableau. Cells behave in a similar way, but can only have one card placed on them at any time.

Normally, the objective of a Solitaire game is to move cards from this tableau into the foundations – the set of goal positions, usually divided by suit, which may have to be ordered from ace to king or otherwise.

Some games involve stock and waste piles – these contain the cards left over after dealing out the tableau. During a game, cards in the stock pile can be transferred into the waste pile (sometimes there is a restriction in that they must be transferred in threes), and the topmost card in the waste pile can be brought down into the tableau. Similarly, a reserve is a pile from which cards can be taken but not placed.

There are two main areas that are relevant to this project - that of the simulation of Solitaire games on computers, and the AI study of solving a problem through the use of searching techniques.

Solitaire Simulators

Windows Solitaires

Every version of Windows since version 3.1 in 1992 has included at least one version of Solitaire. The oldest and most recognisable of these is the Klondike game, written for Microsoft by Wes Cherry. In this game, cards are dealt from a stock into a tableau of seven piles. In the initial state, a number of face-down cards are placed at the bottom of each pile - zero to six from left to right - with an additional face-up card on top of each. The objective of this variation is to arrange the cards into the four foundations separated by suit and ordered from ace to king. Cards can be moved as piles or individual cards.

[image: image18.png]The restrictions of this game are that each pile in the tableau must have cards in descending order and alternating suit, and that only groups of cards that satisfy this constraint may be moved between piles. In some versions, only a King can be placed in a pile once it is empty.

More recently, Solitaire games such as Freecell (by Jim Horne) and Spider (for which no information about the author is available) have been added to the collection of card games that are packaged with Windows. Each of the games uses roughly the same presentation but different rules for each game, and judging by appearance and the similar mechanics of all the games, could easily have been part of a larger Solitaire program.

While each of these programs simulates a variant of Solitaire, their attempts to solve Solitaire games are very limited. The original Klondike game, simply called “Solitaire”, offers no solution system whatsoever. Freecell, which was first included with Windows 98, automatically completes obvious moves in that it will move cards up to the foundations if the next required cards are available. While this does aid the completion of the game, it is not a search system - in this variant of the game, there is never any potential disadvantage in moving a card from the tableau to the foundation, so no consideration is required on the computer’s part.

Spider offers the most significant solution system, but it is still far from the level at which this project aims - it is possible for the user to request the available moves to be shown at any time. The program examines the situation of the cards, and points out to the user which cards can be moved on to which piles (the cards have to be ordered in decreasing numerical order as in Klondike, but suit colour is not an issue). However, this feature simply shows the available moves - there is no guarantee that making a suggested move will result in the game being completed, or whether it will offer any advantage at all.

PySol

PySol is an open-source collection of about 200 Solitaire games written in Python which has been in development since 1999. A large number of games are supported, including a number of the author’s own invention that require unusual card sets (for example, one of them requires a set of cards numbered in hexadecimal).

The collection also includes a hint system, where the computer can make suggestions to the player as to a move to attempt next. This feature is limited as the program can only point out where cards can be moved between piles, and cannot offer advice regarding more strategic elements such as when to bring new cards into the main array of piles.
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There is a “demo” mode where the computer attempts to solve a game on its own. It does this by performing moves according to certain priorities - putting cards on to goal piles, moving them between piles, and bringing new cards in. It keeps doing this until it can go no further, at which point it notifies the user that it cannot solve the game. This approach rarely reaches a goal state as it cannot explore a tree of possible moves, instead proceeding down one path until it reaches a dead end.

The program is distributed under the GNU Public Licence, and therefore the source code is readily available and can be modified without restriction. If game states could be extracted from the program, this would be an ideal base for a solver to work on. However, the structure of the existing code may make it difficult to easily construct a specification language around it.

Freecell Solver

While not a solitaire simulation game in itself, this solver can be integrated with PySol to solve the games in its collection that are modelled on Freecell. It was originally written in ANSI C, but has been ported to a variety of different languages.

The program can also provide solutions to other popular Solitaire games by taking in data about their current game state. Patches for some more popular Solitaire applications are provided on Freecell Solver’s site so that the game states can be extracted.

Freecell Solver is not limited to Freecell because it takes advantage of the fact that many games are based on the notion of stacks of cards, and only modifies its strategy based on the different restrictions that are in place for placing cards on stacks. 

A number of different solving techniques are supported by this solver, including depth-first, random depth-first and A*. A breadth-first search is also provided so that a solution can be verified to be optimal after a solution path has been found.

Solving Techniques

Knowledge Based Systems and States

A knowledge based system is a symbolic AI system that works through a problem by finding a goal state and making transitions through a series of states towards it. It can use its knowledge structure to establish a knowledge base, then move through the states according to reason and planning.

The knowledge-action model is the concept that with full knowledge of the current state, there is only one action that will be performed. The idea behind this model is to find the knowledge state and determine the action to be performed based on the entire collection of knowledge in that state.
A state is defined as something that can be recognized if it occurs again, and a state space is a collection of states. Not all possible states in a problem will be realisable - due to constraints on the possible actions, there will usually be some states that are unreachable. The sequence in which states are visited - the path from the start state to the goal state - is the line of behaviour.

Symbolic AI problem solving is represented in a path tree. This has two drawbacks: combinatorial explosion, where the size of the tree increases exponentially with each layer, and environmental influence, where the same solution may not work for a different environment. This usually applies to problems where there is some external influence, such as having a different opponent each time in a chess game. 
[image: image20.png]Heuristic Searching

The definition of heuristic is “a rough rule” – in symbolic AI, it is used to mean a strategy for solving a problem. Heuristic searches are selective tree searches, and are an essential part of the AI model.

[image: image21.png]The initial state of the AI universe is attached to the root node of the tree, and any modifications to that state (expansions) are on nodes below it. Searches can be managed in a variety of ways, with breadth-first and depth-first being two of the simplest.

In a breadth-first search, all possible paths from the root node are explored. This gives an optimal and complete solution (the goal state will always be found if one exists, and as the search completes one layer of the tree before starting on the next, the shortest path to the goal will always be found) but the algorithm is space-intensive, particularly for state trees with a high branching factor. Breadth-first searches can be implemented by using a queue of nodes - when a node is dequeued from the head of the queue, it is expanded by placing its neighbouring states at the tail of the queue, and is then placed in a “store” as part of the path tree. This tree is eventually built up to contain all the possible states, and the route from the root to the goal can be traced by working back up the tree once a path has been found.

[image: image22.png][image: image23.png]In a best-first search, the value of each expansion node is evaluated before a state is added to the tree, with the leaf node with the highest value being expanded each time. The effectiveness of this algorithm depends on the nature of the problem - it is typically much more space efficient than a breadth-first search as only the nodes that are determined to be the most valuable are expanded, but the success of the solution depends on the accuracy with which “valuable” nodes are identified.

For a search to be effective, a goal should be provided rather than just a problem. The goal to be achieved will quickly restrain the technique used – it focuses the behaviour of the system and allows it to attempt to reach a specific point. After the goal has been established, the actual problem should be formulated, along with the constraints that should be in place – this selects the actions and the states that are available.
Planning

The field of planning in AI is using known information to arrive at a feasible path to a solution. The solution of a planning problem is a sequence of valid actions that move from an initial state to a goal state - solutions must guarantee achievement of the specified goal. Classical planning assumes that the environment to be studied is openly observable, finite and deterministic, and that the only changes to the environment will be caused by the agent that is performing the planning.

In planning, a state is a set of positive literals that describe the environment, with no conditions or functions. A goal state is one of these where the required literals are specified. A state can be said to satisfy the goal state if it satisfies the required literals, whether or not it satisfies other literals as well.

Actions are applicable in a state if a set of preconditions hold before they are executed. Each action, when performed, will add or remove literals from the set of literals that the current state satisfies - this is the effect of the action.

Partial Order Planning involves plans in which some steps are unordered and others are in a set order. The planner breaks problems like these down into a number of subproblems, works on each of them separately and then combines the paths taken to form the complete plan. This focuses the planner on the most important parts of the solution, not allowing the branching of each individual state tree to exceed acceptable bounds.

The overall aim of planning is to form complete and consistent plans. A complete plan involves every step being achieved by moving from another step, and a consistent plan does not contradict the constraints at any stage. When a plan satisfies both of these conditions, it is considered a solution.

Planning in State Spaces

To traverse states in a state space, the valid moves must be determined along with an algorithm for selecting them. There are two main approaches to state space searching - progression planning and regression planning.

Progression planning begins with the initial state of the planning problem, and calculates new states as the results of applying applicable actions to it. The goal state is any state that at least satisfies the specified goal literals.

Regression planning works the opposite way - it starts with the specified goal state, and the effects of undoing planned actions are applied repeatedly to reach potential start states, with the goal being reaching the initial planning state. This method of planning only produces states that stem from the goal - effectively the search is restricted to only actions that are relevant, and this approach often greatly reduces the branching rate of the state tree.
V. Requirements Specification

Functional Requirements

These requirements have been classified using the MoSCoW Prioritisation scheme, including “Must have”, “Should have”, “Could have” and “Would like to have” classifications.

The “Must” requirements are of the highest priority, and need to be completed for the project to be considered a success. The “Should” requirements should be in the finished project if at all possible, but it will not affect the working of the higher level requirements if they are not completed.

Further down the priority list, the “Could” objectives are those which can be largely considered optional, and which are not essential to the working or functionality of the system. The “Would like to” objectives are those which are not planned for inclusion in the system within the scope of this project, but which are recognised as important and which could be included in any future expansion or development of the project.

The Card Game System

1.1 
There must be a system that can handle the movement of card objects in piles.

1.2 
This system must take into account any restraints on the movement of cards that are set out, and disallow invalid moves.

1.3
The system must be able to recognise when a goal state has been achieved.

1.4
There must be a graphical user interface that presents the current state of the game to the player in an understandable fashion.

1.5
There must be a way of invoking the solution system from this interface.

1.6
It must be possible for a state of play to be stored in memory.

1.7
The interface should be easily manipulable so that cards can be moved manually.

1.8
It should be possible for this section to interpret a prepared file to specify the constraints and initial layout of a game (see Specification Language, below)

1.9
The graphical user interface could be made to resemble the familiar layout of cards on a tabletop.

1.10
There could be an “Undo” feature to allow the user to return to a previously visited state.

1.11 
There could be support for non-open games (those in which not all cards are initially visible).

The Solution System

2.1
It must be possible for this system to take in a set of constraints and a state of play.

2.2
The system must be able to attempt to solve games from the position given, while taking into account the provided constraints.
2.2
It must be possible to report a solution path back to the user if one is found.

2.3
The system must recognise when the goal state has been reached.

2.4
The search should involve “intelligent” decisions that are likely to aid in finding the solution to a game.

2.5
The search should avoid repeating states in the same branch of the path tree.

2.6
There should be a reasonable method of recognising when a solution cannot be found.

2.7
The system could demonstrate its solutions by stepping through each move in the graphical user interface.

The Specification Language

3.1 
There should be a way in which to specify properties such as the number of piles to be used in the game and their behaviour.

3.2 
These properties should be specifiable in a separate “specification language” that can be read by the program.

3.3 
The language could be in a standard readable format such as XML.
Non-functional requirements

1
The system must be evaluated and tested to a satisfactory level.

2
There must be adequate documentation of the system - both for maintenance and users.

3
The system should be robust and able to cope with the occurrence of unexpected conditions, such as running out of memory in which to store states.

4
The system (particularly the section involving the reading of the specification language) should recognise and warn about any invalid data entered by the user.

5
The system should be runnable on most hardware on which the Java platform is available.
Project Plan

VI. Project Plan Introduction

This section of the document will build on the Project Specification, and will detail more closely the method by which the system will be implemented in order to fulfil the objectives and requirements of the project.

The module diagram and overview show the plan for the system’s general implementation, including how data should be passed between the individual sections of the system, and the included Project Monitoring Sheet indicates the times at which certain code-related achievements are estimated to be completed.

The testing and documentation plan section includes the plans for after the majority of the project’s coding has been completed, and shows the intended ways in which to ensure the reliability, robustness and usability of the system. Time for the completion of testing and documentation has also been shown in the Project Monitoring Sheet.

In the event that the project falls behind schedule, the Fallback Plans section indicates steps that can be taken to improve the situation by suggesting alternatives to the plans already laid out.
VII. Module Diagram

The diagram shown on the next page shows the general structure of the system that has to be delivered for the project - the components of the program and how they interact with each other. It has been laid out in a UML-like fashion so that it can more easily be compared to the final delivered program.
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VIII. Module Overview

This section provides more in-depth descriptions as to the purpose of each component, and the approaches to implementing them that are planned.

Card

The “Card” class will be the most basic of the classes, and each instantiation of it will represent an individual card. Two attributes are necessary for this - a suit and a value, which can both be represented in simple types such as integers. In this way, it may be possible to extend the deck of cards used by the program to include new suits or values of cards (if the scope of the project extends to non-standard decks.)

Normally, one entire deck of fifty-two unique cards should be initialised at the beginning of a game and dealt out as specified in the required layout.

Pile

This class represents collections of cards in piles. This is the arrangement of most cards in a Solitaire game, with the only difference between the piles being the restrictions imposed on them - whether cards can be placed on or taken from them, if the piles are to be considered goal piles (foundations), and so on. Even other elements of Solitaire games can be represented in this format - a free cell is a pile with a limit of one card.

It is necessary to consider not only the piles of cards on the “tabletop”, but also the way in which cards are moved - in many games, multiple cards can be moved at the same time if the entire portion of the pile being moved satisfies certain conditions (for example, descending order and alternating suits in Klondike). These collections of cards can also be represented as piles, with one sub-pile being removed from one pile and concatenated on to another (if the move is determined to be valid).

Representing all collections of cards as piles rather than having separate elements for each card allows a more simple approach to specifying games, with only the number of piles and the properties of each of them having to be specified. Simplifying the data structures also aids in the storing of game states.

Piles will be implemented as a stack-like data type - for reasons outlined above, there will have to be additional functions in this class compared to a simple stack, but the basic representation is the same.
GameSystem

This component will handle the entire collection of piles that together form a Solitaire game, and keep track of the cards that are contained within each pile. Other purposes could include keeping records of the number of games won or lost for the purposes of having a general guide to the likelihood that a specific style of game can be solved, or keeping track of the number of moves made to reach the goal state.

The system must allow for the movement of cards or sequences of cards between piles, but before allowing movement to take place, must test the requested move against the restrictions imposed by the rules of the game.

The goal state has been achieved when all cards have been successfully moved to the foundations (in most Solitaire games). The game system must recognise this and confirm the successful completion of a game to the user.

Graphical User Interface (GUI)

The graphical user interface will interpret the data on the positions of the cards in the game and lay them out on the screen in an understandable fashion for the user. This may be in a form that resembles cards as they would be placed on a tabletop, or a less familiar format that shows stacks of cards in the same way as they are represented in the code itself. A possible alternative layout is shown on the left.

The representation of cards will have to be redrawn after every move, with each pile being cleared and then iterated through to show the cards that are stacked in them. From the diagram above, it is clear that using the suggested layout will quickly use [image: image25.png]vertical space very quickly, so space-saving approaches such as only showing the top card on foundations (as the cards below them are always in order) could be considered.

Because of the wide range of possible Solitaire games, it would be a difficult task to attempt to devise a method to lay out the piles in a game automatically in a logical way without them obscuring each other. To avoid having to do this, each specified pile will have two co-ordinates at which its base should be placed - this should allow as much flexibility as needed.

Solver

The solver will be the most complex and time-consuming part of the system to implement. The purpose of this module will be to take in a current game state and a set of rules and constraints, to build up a path tree from that state, and eventually provide the route to a goal state if one is reachable.

For the purposes of searching to find a goal state, reachable states could be kept on a queue and sent to a store once examined (the details of this technique are shown in the Context Survey of the Project Specification). Using this technique, each state is put into a store once examined, with the path tree being built up by each state having a reference to the parent state from which it was reached.

The search method depends on the criteria that are used for enqueueing states - in a breadth-first search they are simply enqueued at the tail of the queue, but other searches may involve inserting states nearer the head of the queue if they are considered as better options than other states. Using a best-first search in this fashion provides a faster method of arriving at a solution, but its actual effectiveness will depend on the strategy used for enqueueing the states to be examined.

It will not always be possible to arrive at a goal state from the state passed to the solver. As many search methods can result in a tree with infinite depth (this can be caused by two states alternating repeatedly), a mechanism to prevent repeated moves will have to be in place. One strategy for accomplishing this is to iterate up the tree by examining the parent node of the currently examined nodes in turn, and discard the state if any of the states on the same branch match it exactly.

Once the problem of repeated states has been solved, a search that cannot reach a goal will only terminate once no more states can be examined (when the queue is empty). While using this approach ensures that no goal states are missed, the large number of states to examine may result in the search taking a large amount of time. Because of this, it may be advantageous to run the search in a thread separate from the main program, and allow this thread to be halted by the user at any time. (A time or depth limit for the search may also be specified.)

State

In order to store a path tree for the purposes of solving a Solitaire game, states will have to be kept in memory. A state in this case is a layout of all cards in the game - therefore for a state to be stored it will be necessary to keep a record of each pile and its contents. This could be achieved by using a two-dimensional array of cards.

A new state will be created for each possible layout of cards in the game, and stored in the path tree while attempting to find a solution.
Queue and Store

The queue and stores are collections of states, organised in such a way to aid the discovery of a solution path. The queue will hold a queue of states, and when dequeued (subject to the conditions to avoid repeating states described above) the states will be placed in the store to build up the path tree. Both of these classes can be implemented in a simple form such as a linked list.

Specification Language Interpreter

The interpreter will have the purpose of parsing card game specification documents and converting their information into a form usable by the program. This will involve finding the number of piles specified in the file along with their individual properties, and passing this data to the card game system to initialise a game.

Classes capable of XML parsing are available for free use in Java – one of these is the “DOMParser” class. It should be possible to invoke an object such as this to iterate through the file and gather the contained information, and it is for this reason that it has been proposed to use an XML-based file to store game specification data.
Specification Language

As mentioned above, the specification language will most likely be based on an XML schema. This is not a class like most of the other modules.

Most Solitaire games involve moving as many cards as possible to foundations, so if written correctly, the specification language may not need to explicitly state the goal of individual games. Similarly, the constraints that apply to the cards in a game (the ordering of cards in the tableau, for example) can be specified as properties of the piles instead of general rules.

The information that needs to be present for each pile can mostly be represented as attributes of integers and booleans:

· The number of the pile, to act as an identifier.

· The position of the pile on screen (X and Y co-ordinates)

· The limit of cards in the pile (1 for a free cell, 0 for no limit, or any other value)

· Whether cards can be moved to this pile or not

· Whether cards can be moved from this pile

· If sub-piles can be taken and removed from this pile, or only individual cards.

· The constraints that apply to cards being moved to the pile; whether the moved card needs to be of a different colour, or in numerical sequence. (This could be implemented as a set of booleans that apply to each constraint.)

· If this pile is a stock pile, and if it is, the identity of the “target” waste pile in which cards should be placed (some games may require multiple “targets” for a stock pile), and whether the stock can be refilled once it has been emptied

· If this pile is a foundation, and therefore a goal position for cards.

· How the pile should be displayed on the screen – whether only the top card should be visible as in most foundation piles, or all visible as is usual in the tableau.

In addition to these, the file may need to explicitly state the number of piles that should be present in the game, and the name of the game itself. The actual data held will be subject to experimentation with the language and its interpreter.

IX. Testing and Documentation Plans

The sections of this project will have to be tested individually before they are integrated. The card game system will be the first to be completed and tested, as its handling of the movement of cards and the restrictions on these movements will form the basis for the solution section of the project – it should be able to report reliably on which moves are valid and therefore which states are reachable for a given state of the game.

It may be advantageous to write the card game system so that it plays one set game at first, but in such a way that it can be extended later by varying the number and type of game elements by simply changing values in the code itself. Once this has been achieved it will be possible to begin work on the definition language and allow it to specify the characteristics and rules of the game to be played. This part of the system should be evaluated by the amount of freedom that it allows in the specification of Solitaire games, and the ease of its use in creating them.

The solution system will be tested by evaluating the effectiveness of its searching through the state tree, and the efficiency of the solutions that it provides. Comparing different standard state tree search algorithms should show a difference in the speed and complexity of the different approaches.

Once all three systems are functional to a satisfactory level, it will be necessary to ensure the functionality of the entire system with several test cases involving the specifications and results of the attempts at solutions to several unique game styles. This section of testing will involve examination of the branch points of the code, and testing for true and false cases in each of them.

At first, the system should be treated as a “white box”, where the internal workings of the code are known and small modifications can be performed to improve the system’s functionality. Each component of the system should be tested in this way, and then combined and tested again to ensure that data is passed correctly between them.

Once this has been completed and the visible defects have been eliminated, “black box” testing should begin. In this method of testing, data is taken through all the sections of the system - in this project this would involve writing a specification for a game, reading it using the card game system and then requesting a solution. The entire system is treated as a black box, with only the input and output being evaluated, and the success of the test depending on whether the outputs match those that are expected.
Throughout its development, the source code for the project will be documented using JavaDoc for ease of understanding. External documentation for the use and maintenance of the code will also be required, and will be written towards the end of the project when elements such as the user interface are least likely to undergo major modifications.

If time is available, the user guide section of the documentation may be integrated with the program itself as online help. In this instance, it may still be necessary to provide a brief separate user guide as well.

As part of the project, a number of progress reports have to be submitted - two interim reports that will detail the progress made up to those points, and a final project report that must detail the achievements and evaluation of the project. Sections of time for the production of these documents have been planned in the Project Monitoring Sheet below.

X. Fallback Plans

The aim of this project is to specify and solve finite and deterministic problems. A number of planners that can provide solutions to this type of problem already exist, so if the development of the solver proves infeasible or falls too far behind schedule it may be possible to adapt the card game system to output a state that is readable by one of these programs.

If the opposite situation occurs, it may also be possible to adapt the project to solve positions that are specified by another open source solitaire program, such as PySol. This may involve altering the source code of the existing program as well as ensuring that the project is compatible with it.

Other fallback plans have been implied by the level of importance of the objectives and requirements laid out in the Project Specification. The third level objective - that of handling non-open games - can be considered optional and will only be examined once all other objectives are complete. It is not an essential part of the system.

Similarly, while a working method of defining solitaire games would extend the functionality of the system, it is a secondary objective, and its development may be limited in preference of the three main objectives of the project.

The requirements are more specific, but have been prioritised in the same way. The essential requirements will be fulfilled before moving on to those on the second priority level, and so on.

XI. Project Monitoring Sheet

	Period
	Semester 1
	 
	 
	 
	 
	 
	Christmas
	 
	 
	 
	 
	 

	Week Beginning
	31/10
	07/11
	14/11
	21/11
	28/11
	05/12
	12/12
	19/12
	26/12
	02/01
	09/01
	16/01
	23/01
	30/01

	Week Number
	6
	7
	8
	9
	10
	11
	12
	 
	 
	 
	 
	 
	 
	 

	Deadlines
	 
	 
	Plan
	 
	Interim 1
	 
	 
	 
	 
	 
	 
	 
	 

	Specification and Plan
	 
	 
	
	
	
	
	
	
	
	
	
	
	
	 

	System to emulate one card game
	
	
	 
	 
	 
	
	
	
	
	
	
	
	
	 

	Adaptation of this system for manual extendibility
	
	
	
	
	
	 
	
	
	
	
	
	
	
	 

	System to generate a path tree from an initial state
	
	
	
	
	
	
	 
	 
	 
	
	
	
	
	 

	Adding constraints to this system
	
	
	
	
	
	
	
	
	
	 
	 
	
	
	 

	Integrating the solution system with the first system
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Period
	Semester 2
	 
	 
	 
	 
	 
	Easter
	Semester 2
	 
	 
	 

	Week Beginning
	06/02
	13/02
	20/02
	27/02
	06/03
	13/03
	20/03
	27/03
	03/04
	10/04
	17/04
	24/04
	01/05
	08/05

	Week Number
	1
	2
	3
	4
	5
	6
	7
	 
	 
	8
	9
	10
	11
	12

	Deadlines
	 
	 
	 
	Interim 2
	 
	 
	 
	 
	 
	Report
	Demo
	 

	Producing a specification language for Solitaire
	 
	 
	 
	
	
	
	
	
	
	
	
	
	
	 

	Enabling the system to read this language
	
	
	
	 
	 
	 
	
	
	
	
	
	
	
	 

	Evaluation and Final Testing
	
	
	
	
	
	
	 
	 
	 
	
	
	
	
	 

	Project Report
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Presentation Preparation
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 


XII. Glossary of Abbreviations and Terms

Solitaire Terms

Cell: A position where only one card can be placed at a time.

Foundations: The set of goal piles for cards – these are usually ordered numerically and separated by suit, but vary between games.

Reserve: A pile from which cards can be taken but not placed.

Stock: The pile of cards left over after dealing the tableau.

Tableau: A collection of card piles that form the main body of a Solitaire game.

Waste: The pile created by removing cards from the Stock pile. Usually, cards in this pile are brought down into the tableau.
Abbreviations

AI: Artificial Intelligence

DOM: Document Object Model

GNU: Gnu’s Not Unix (a Unix-like class of operating systems)

GUI: Graphical User Interface

JavaDoc: A standard for in-line documentation of Java code.

PySol: Python Solitaire

UML: Unified Modelling Language

XML: Extensible Markup Language
Appendix B: Interim Report 1

Since the delivery of the Project Specification and Plan, work on the tasks laid out in the Project Monitoring Sheet has been progressing faster than expected. However, difficulties have been encountered that may extend the time required on some tasks - mainly the system to explore a search tree and find a solution from an initial state.

The work so far has been focused mainly on the handling of card games with a view to allowing the specification of a game from an external file at a later date. At the moment, specifying the rules of a game using only a sequence of pile specifications is possible in the source code, but is limited by the attributes that have been supported in the Pile class.

One of the most notable omissions at the moment is the lack of support for Stock piles, which are featured in many games - the styles of game that have been examined so far are ones in which the entire tableau is dealt at the start of the game. It has also been noted that some games will require specific cards dealt into piles at the beginning, and this will have to be considered when writing the code to interpret the specification language. However, moving the specification from within the Main class to an external file is not anticipated to be a problem.

Another feature that has not yet been implemented is the ability to move collections of cards rather than individual ones - this is also common in Solitaire, though does not feature in the games that have so far been examined. This is an important feature, as its presence also affects the moves that have to be explored by the solution system.

The solution system itself has been coded but is in its early stages, and requires much more work in order to be efficient - at present it performs moves virtually at random and therefore is ineffective in solving all but the simplest of games with reduced packs of cards. In a game of Freecell it is able to handle games involving forty cards fairly reliably, but often takes a very large number of moves to arrive at a solution.

To solve the issue of efficiency, better heuristics have to be applied to the system - if possible, rules that can be applied to all games should be used, but in the event that finding such general rules proves infeasible, it may be possible to examine certain properties of specified games (the number of foundation piles being an example) to decide on more specific strategies to attempt.

Adding constraints to the solution system has proved simple as the same rules as for simulating a card game solved manually apply to it. The system recognises when it has suggested a state identical to a state that has already been considered, but does not recognise when states are effectively the same as yet (for example, moving a card to one of any four empty piles results in four effectively identical states). An attempt to identify these has to be made, as the increased cost of comparison will be worthwhile if it results in a greatly reduced search tree.

Also of note is the lack of any form of GUI at present - this part of the project will be dealt with after the internal workings of the system are in a satisfactory state.
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The most significant change that has been made to the project since the delivery of the first Interim Report has been a complete rewrite of the previously large Main class. It now simply sets up a game and passes its initial state to the new “Game” class, which handles the game rules and user interaction. This class includes a basic but functional GUI, which has been implemented to aid the user’s view of the layout of the current state of the game (screenshots of the running program have been included below).

The interface provides two ways of moving cards between piles – either by entering the source and target piles manually or by using the “Suggest” feature. This displays all the valid moves from the current state in a ComboBox, and allows the user to select directly from the possibilities. The progress through a game is recorded in the onscreen move list, which can be stepped through one move at a time or automatically run through to the end.

Most moves in a game involve simply moving one card from a source pile to a target. Support has now been added for Stock piles, which deal to the entire tableau at once when they are moved from – the move is recorded as “Unstock from pile #” in the move list, with no target pile being visible. It must be considered how to specify the targets of stock piles, as there are some games (e.g. Klondike) where stock piles do not deal to the tableau but instead to a single “waste” pile.

The rules for games are no longer hard-coded into the program, but are specified in XML files and are interpreted using the Interpreter class at runtime. These specification files take the form of lists of piles and the properties and rules associated with them. This data is converted into a collection of Pile classes when the XML file is read by the program.

An additional feature of many Solitaire games is the placement of specific cards in the piles as games begin. Black Hole is an example of this, with many specifications of the rules requiring an Ace of Spades in the central foundation (although in reality the card used does not affect the solvability of the game). It is possible to emulate this in XML by including the card’s properties in the “fixedcards” tag.

To deal a game, the program first examines and places the fixed cards, shuffles the pack, reserves the specified number of cards for any Stock piles and then deals the remainder of the pack to the tableau.

The solution system has been improved by examining the heuristics that it uses and also by modifying the way that visited states are stored. It has been difficult to produce general strategies for all games due to the wide range of types of Solitaire that the system is intended to solve, but now the system tends to prioritize moving cards to foundations, followed by bringing required cards closer to the front, and only then considers other moves. The strategy for moving cards from Stock piles has yet to be considered, as at present the system treats this as a last resort.

In earlier versions of the program, the solution system required that every visited state had to be checked against the current one to prevent duplicate states from arising – this had been intended to be a temporary measure, and was infeasible for the number of states that searching real games involved. Modifying the code to only compare the current state against states further up the same branch of the tree made the system slightly more efficient, but still unreliable.

This problem was solved by replacing the tree-based store with a hash table. Hash values are generated from states by summing the contents of their piles (with each possible card being given a unique value) and bit-shifting the result left each time before moving on to the next. This results in a hash code that is satisfactorily close to unique for each state. When a state is examined, it is placed in the stack of states to visit only if an identical state with the same hash value has not already been visited.

Before examined states are added to this hash table, they are sorted based on the properties and contents of their piles rather than the piles’ identification numbers. This leads to the recognition of states that are effectively the same – a state in a Freecell game with the Ace of Spades in the first foundation is treated as identical to a state with the same card in any of the other three foundations. This results in further reductions to the number of states to visit, and therefore a greatly reduced search tree.

After examining and attempting to solve a game, the solution system now passes the solution path (or the path that leads to the state closest to a solution) back to the Game class, where it is displayed as part of the move list and can be stepped or run through in the same way as moves made by the user.

Now that the majority of the functional requirements laid out at the beginning of the project have been fulfilled, the focus for the remaining time will be on extending the diversity of the games that can be played and solved by the system. The ability to move collections of cards (as in Klondike) has still not been implemented, and will require a fairly major change to the way that the system handles moves. The specification language will also have to be continually changed to reflect the capabilities of the system.
Project Screenshots at Interim Report 2

[image: image7.png]
Here, the Solver is in the process of searching through the path tree for Freecell.

[image: image8.png]
If the Solver returns a valid solution path, it can be stepped through or played to the end automatically.

[image: image9.png]
Freestack is an original Solitaire game that was written as an example of an easier to solve problem.

[image: image10.png]
It is possible to specify Black Hole using the XML schema provided, but at present the system is unlikely to solve it.
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Appendix D: Possible Changes

In the light of experience, a few improvements to the project specification and plan are deemed necessary.

The Project Monitoring Sheet may have benefited from having the stages being reconsidered - some of them are vague and do not provide a clear explanation of the progress to be made at each stage. For example, “Adding constraints to this system” was an unnecessary step, as the constraints handling had already been written during the writing of the first stage of the project, and the same code was used for both areas.

The stages given are also very definite, showing only if stages were deemed complete or incomplete, and the table does not take into account the large amount of time that was used by continually improving and optimizing the specification and solution systems. Indeed, during future development of the project, the system would have to be continually updated to take into account more rules or solving techniques, so it is inaccurate to indicate that the systems are definitely complete.

The UML diagram provided in the Project Plan is also rather vague, though it approximately reflects the collection of classes that were eventually implemented. A clearer UML diagram has been handed in along with the other documentation for the project.

The intention of being able to handle games in which collections of cards could be moved was never mentioned in the specification or plan, and should have been noted as one of the tertiary functional requirements, similar to the optional requirement that the system could be extended to handle games in which not call cards are visible at the beginning of the game. Eventually, it was decided not to implement this feature.

There is also a small issue with terminology in the specification and plan - the collection of potential future states is referred to as a “queue”, but was eventually implemented as a stack.

Appendix E: Testing Summary
During the initial stages of the project, the target set for the system was of getting one card game to play correctly, coded in a way that could be expanded later. The game chosen was Freecell, due to its simple nature - all cards are laid out at the start of the game, and only one card can be moved at a time.

At this point, the program’s entire input and output were through the command line. Output was achieved through the various toString() methods for each class that still exist in the program for bug identification purposes.

Once the game had been completed, its correctness was tested using a variety of methods. The most obvious of these was using input in the same way that a user would, giving the program normal, extreme and exceptional data in the form of the source and target piles for each move. The system was effectively treated as a white box, with progress being reported at every step of the procedure, such as when cards were being removed from and added to piles.

When the error handling was in a satisfactory state, it was necessary to be able to see at a glance the moves that the program considered valid. This took the form of an outputValidMoves() method in the State class, which was eventually modified to return an array of moves and renamed “findValidMoves”. Output from this method was used throughout the testing of the program to ensure that the system was able to consider all valid moves from a state - as essential property for the solver.

The system to attempt to solve games is fairly complex and uses multiple classes, and therefore it was difficult to verify its correctness even with the output methods described above. Including the facility to suggest moves had the advantage of assisting in the testing of this part of the system, as the move suggestor uses the same code as the solver to prioritize its moves, and allows a tester to verify whether moves are being considered in the correct order.

The methods to sort states and produce hash codes from them proved the most problematic in testing the system. To cope with this aspect of the program, a separate Main method was written in the State class that set up two small experimental states and produced output as to their sorted equivalents and hash codes. This method was changed as needed, and eventually removed from the program once it was ensured that different states produced different hash codes, and states that were effectively identical shared a hash value.

When the solver was adapted to make use of the system, constant reports of the states entering the hash table were output to the command line to ensure that duplicate states were not being considered, and equally importantly, that non-duplicate states were not being rejected.

Most of the testing of the project was performed on only five games - Freecell, Black Hole, Bisley, and two invented games named Freestack and Stocktest. Once the system could solve these games with a reasonable degree of reliability, a large number of other games were added, with the specifiable properties of the piles being slightly modified as needed to incorporate them. Once it was possible to specify a wide variety of Solitaires, this approach verified the extensibility of the system.
Appendix F: Testing Data

This section shows the results of the testing performed during the writing of the Evaluation section of this document. Fifty attempts to solve each game were made, and four attributes were noted for each run.

Depth shows the depth of state at which the solver ended - it is only particularly meaningful if a solution was found, as it represents the number of moves in the complete solution path. The examined and enqueued state values show the state of the store of visited states and the stack of future states to visit when the solver finished running. The value for “best state” is the number of cards that the solver moved into foundations - if a one-deck game was solved, this will be 52.

There are three possible outcomes for the solver - reaching a goal state successfully (shown by “O”), concluding that no solution is possible (“X”) and running out of available memory, showing no definite result (“?”).

Freecell

The tactics specified in the XML for this game were:

movetofoundations (Move a required card to a foundation pile if it is available)

uncoverrequired (Prioritize moves that bring required cards closer to the front)

keepfreecells (Keep free cells and piles free if there is another move available)

	Depth
	Examined
	Enqueued
	Best
	Result

	97
	209
	577
	52
	O

	124
	8398
	361
	8
	?

	407
	6684
	809
	22
	?

	155
	4016
	749
	52
	O

	158
	8181
	516
	14
	?

	246
	719
	999
	52
	O

	499
	6617
	999
	15
	?

	210
	300
	991
	52
	O

	499
	6375
	991
	25
	?

	128
	190
	637
	52
	O

	377
	4382
	999
	52
	O

	181
	334
	896
	52
	O

	281
	8064
	690
	8
	?

	191
	323
	827
	52
	O

	132
	424
	778
	52
	O

	336
	7922
	904
	17
	?

	170
	363
	704
	52
	O

	71
	8104
	316
	11
	?

	297
	1811
	972
	52
	O

	375
	1077
	999
	52
	O

	498
	7435
	981
	12
	?

	98
	100
	596
	52
	O

	283
	1246
	999
	52
	O

	81
	83
	608
	52
	O

	140
	191
	740
	52
	O

	257
	3666
	999
	52
	O

	133
	3164
	677
	52
	O

	176
	1272
	885
	52
	O

	248
	2067
	999
	52
	O

	168
	425
	697
	52
	O

	494
	7376
	968
	11
	?*

	109
	118
	653
	52
	O

	494
	7582
	972
	17
	?

	90
	98
	618
	52
	O

	132
	8273
	403
	12
	?

	130
	151
	815
	52
	O

	390
	7912
	694
	13
	?

	140
	158
	645
	52
	O

	58
	8494
	154
	8
	?

	480
	864
	999
	52
	O

	499
	7175
	976
	20
	?

	135
	181
	659
	52
	O

	123
	229
	611
	52
	O

	395
	7810
	864
	5
	?

	498
	7478
	984
	31
	?

	111
	302
	622
	52
	O

	151
	248
	670
	52
	O

	270
	2155
	999
	52
	O

	499
	6556
	984
	35
	?*

	105
	452
	636
	52
	O


Runs of the solver marked with * hit the depth limit, but the games were solved when the solver was re-run with a depth limit of 1000 (with 577 and 516 moves, respectively). These games have been counted as solved.

Black Hole - First Run

Two tactics were provided to the solver during this run.

samedirection (Attempt to move a card to the foundation that is numerically in the same direction from the last move, e.g. follow a 3 on a 2 with a 4 on the 3, or an Ace on a 2 with a King on the Ace.)

avoidleavingspaces (Prioritize moves that free up cards beneath them over moves that leave empty spaces.)

	Depth
	Examined
	Enqueued
	Best
	Solved

	35
	13412
	54
	51
	?

	51
	7444
	41
	52
	O

	36
	13315
	35
	50
	?

	51
	434
	56
	52
	O

	30
	13400
	37
	50
	?

	51
	2873
	46
	52
	O

	38
	13378
	44
	49
	?

	31
	13425
	37
	49
	?

	51
	6842
	47
	52
	O

	40
	13390
	41
	51
	?

	34
	13393
	43
	46
	?

	51
	2196
	45
	52
	O

	2
	9
	0
	5
	X

	33
	13387
	35
	49
	?

	0
	1
	0
	1
	X

	36
	13373
	47
	50
	?

	51
	593
	49
	52
	O

	39
	13378
	42
	51
	?

	40
	13372
	44
	51
	?

	35
	13313
	32
	48
	?

	31
	13382
	35
	50
	?

	31
	13378
	36
	38
	?

	39
	13386
	42
	50
	?

	51
	162
	52
	52
	O

	36
	13422
	37
	50
	?

	39
	13375
	44
	50
	?

	39
	13423
	39
	48
	?

	38
	13385
	41
	46
	?

	40
	13363
	51
	51
	?

	39
	13374
	50
	50
	?

	1
	2
	0
	2
	X

	36
	13363
	49
	50
	?

	51
	9289
	48
	52
	O

	51
	1212
	46
	52
	O

	2
	6
	0
	4
	X

	39
	13370
	47
	50
	?

	43
	13368
	54
	50
	?

	51
	263
	54
	52
	O

	51
	99
	44
	52
	O

	39
	13417
	39
	51
	?

	51
	6421
	51
	52
	O

	1
	3
	0
	2
	X

	38
	13370
	43
	47
	?

	40
	13379
	30
	49
	?

	34
	13414
	41
	50
	?

	0
	1
	0
	1
	X

	26
	13364
	36
	50
	?

	51
	178
	44
	52
	O

	41
	13385
	47
	51
	?

	37
	13459
	40
	50
	?


Black Hole - Second Run

This set of executions of the solver used the same tactics as before, but in reverse order.

	Depth
	Examined
	Enqueued
	Best
	Solved

	38
	13372
	52
	51
	?

	42
	13374
	46
	50
	?

	51
	3665
	55
	52
	O

	42
	13408
	60
	51
	?

	40
	13367
	46
	50
	?

	40
	13370
	49
	49
	?

	38
	13389
	45
	49
	?

	30
	13388
	34
	50
	?

	32
	13357
	51
	50
	?

	37
	13370
	42
	49
	?

	3
	514
	0
	13
	X

	35
	13367
	47
	51
	?

	29
	13376
	34
	41
	?

	40
	13412
	44
	50
	?

	43
	13402
	54
	50
	?

	33
	13370
	44
	45
	?

	51
	618
	52
	52
	O

	46
	13365
	54
	48
	?

	33
	13396
	50
	51
	?

	45
	13361
	60
	50
	?

	39
	13390
	38
	49
	?

	37
	13369
	50
	50
	?

	36
	13391
	51
	50
	?

	30
	13407
	31
	50
	?

	44
	13374
	45
	48
	?

	37
	13364
	47
	45
	?

	38
	13372
	51
	51
	?

	37
	13372
	38
	47
	?

	40
	13425
	49
	49
	?

	36
	13392
	52
	49
	?

	32
	13374
	35
	48
	?

	0
	1
	0
	1
	X

	31
	13369
	41
	49
	?

	35
	13393
	48
	49
	?

	0
	1
	0
	1
	X

	5
	137
	0
	6
	X

	4
	153
	0
	9
	X

	51
	105
	68
	52
	O

	42
	13374
	44
	50
	?

	25
	13372
	42
	47
	?

	39
	13397
	49
	49
	?

	37
	13426
	50
	50
	?

	40
	13416
	44
	51
	?

	24
	12844
	38
	47
	?

	0
	1
	0
	1
	X

	35
	13375
	42
	51
	?

	51
	4836
	57
	52
	O

	39
	13379
	64
	50
	?

	3
	25
	0
	6
	X

	36
	13369
	42
	50
	?


Appendix G: Log Summary

Throughout the project, a log was kept of the significant achievements made so that progress could be monitored. This section is a summary of the contents of the project log.

November

After the completion of the project specification and plan, the first objective of the project was to implement a system that allowed the user to play through one type of Solitaire, while taking into consideration that it would be expanded later. Freecell was chosen due to its simplicity. Basic user input was handled, allowing a user to move between piles and request a list of possible moves from the command line.

Once the game system could cope with Freecell, it was changed to be state-based, storing previously visited states in a LinkedList store (which was later changed to a Hashtable). Converting the system to work in this way also allowed work to begin on the Solver class, which used the same rules as applied to a human player.

December

With the solver capable of solving very basic games, the next task was to improve on its heuristics. One major step forward was allowing the program to identify piles that contained cards that were required in the foundations (rather than those which simply had required cards at the top), and this allowed the system to solve 40-card Freecell games fairly reliably.

During this month, the first version of the interpreter for the specification language was written. At this stage, only the properties of piles and any fixed cards were specifiable.

It was recognised at this stage that the search had to be improved in order to make it acceptable for the project to be deemed successful. The first step towards this involved writing the first method to sort states, and keeping two stores - one for sorted states and one for unsorted ones. By comparing sorted states to each other it was possible to determine whether states were effectively identical or not, but the method used was not very time or space efficient.

January

At this stage, the three main sections of the project were in a workable state. Work started on a graphical user interface to present the state of the game to the user in a more understandable fashion. This also allowed the code to be rewritten in a more modular fashion, rather than the monolithic “runGame” method in the Main class used previously.

February

The existing code continued to be reworked into the frontend. Significantly, the Solver was transferred so that it was possible to invoke it from the GUI, but it was not threaded at this stage.

A hash table was also added to the system once the methods for sorting states and calculating their hash codes had been satisfactorily completed. The addition of this hash table eliminated the need to search through a large list of states on each iteration, and also prevented duplicate states from arising. This made the search much more efficient, and allowed the focus to shift to extending the specification language.

March

Support for Stock piles was added to the system, which necessitated a fairly large change in the way that the list of possible moves was handled. It was also apparent that the system had no method of dealing with Stock piles efficiently, so the concept of specifying tactics within each game’s XML file was introduced. The Interpreter class was modified to handle the new requirements.

April

At the beginning of this month, the library of games to be used with the system was vastly increased in order to verify the ability of the system to cope with a variety of Solitaires. Most games could be specified with no changes to the existing system, but various attributes were added to the Pile class as they became necessary.

This document was also produced during this month.

Appendix H: Status Report

No major deficiencies have been identified in the project with regard to the aims and objectives that it was intended to achieve, although improvements in its efficiency and solving techniques would always be possible given more development time. Suggestions for directions in which the project could be developed have been provided in the “Future Development” section of the Conclusions.

There may be some memory issues with the project - the method by which states are stored and displayed could be made more efficient to allow greater portions of the search tree to be explored before the available memory is exhausted.

In addition, the system appears to run significantly faster on some machines than others - notably, running it under Mac OS X was extremely slow compared to the Windows environment on which it was written. 
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A possible stack-based graphical representation (representing Freecell, with not all cards shown)



Module Diagram



Example implementation of a breadth-first search tree



Structure of a path tree



PySol



Klondike Solitaire in Windows
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� Rules for Black Hole can be found in “Search in the Patience Game ‘Black Hole’”, Gent et al. http://4c.ucc.ie/web/upload/publications/techReport/cppod-10-2005.pdf

� Sun Public Licence - http://java.sun.com/spl.html

� Figure from the Freecell FAQ: http://www.solitairelaboratory.com/fcfaq.html#WinRate

� Example: Solsuite (http://www.solsuite.com)

� Figure from “Search in the Patience Game ‘Black Hole’”, Gent et al. http://4c.ucc.ie/web/upload/publications/techReport/cppod-10-2005.pdf

� SolSuite available from http://www.solsuite.com

� PySol source code by Markus Fleck, Markus Oberhumer - available from http://www.pysol.org

� FreeCell Solver by Shlomi Fish, Don Woods, et al. available from http://fc-solve.berlios.de/

� Terminology from � HYPERLINK "http://www.usplayingcard.com/gamerules/glossary-index.html" ��http://www.usplayingcard.com/gamerules/glossary-index.html� - The United States Playing Card Company.

� � HYPERLINK "http://www.pysol.org" ��http://www.pysol.org�, Markus Fleck. Version 4.82, 2003

� � HYPERLINK "http://vipe.technion.ac.il/~shlomif/freecell-solver/" ��http://vipe.technion.ac.il/~shlomif/freecell-solver/�, Shlomi Fish. Version 2.8.10, 2003

� Sources: Lecture Notes for Artificial Intelligence - Ian Gent, University of St Andrews, 2004; “Artificial Intelligence: A Modern Approach” Russell and Norvig - Prentice Hall, 1995
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