David Newton
CS4099 Maintenance Document
2006

CS4099 Major Software Project:

Solitaire Specification, Simulation and Solution System

Maintenance Document

David Newton

University of St Andrews

Contents

	I. Class Details
	3

	
AbsoluteConstraints

AbsoluteLayout

Card

Desktop

FileFilter

Game

Interpreter

Main

Move

Pile

Solver

State

StateStack

StateWriter

II. Likely Changes to the System
	3

3

3

3

4

4

5

5

5

6

6

6

7

7

8

	
Imported Packages

Extensions to the Games Handled by the System

Changes to the Solver and Move System

Alterations to the GUI
	8

8

10

10

I. Class Details

The “Solitaire Specification, Simulation and Solution System” is implemented in Java 1.4.2, and is fully compatible with Java 5. All classes are provided in the “cs4099” package.
AbsoluteConstraints
The AbsoluteConstraints class handles the dimensions and co-ordinates of on-screen components, and is used by the AbsoluteLayout class for laying out the graphical user interface. Its code is unchanged from the version provided by Sun Microsystems.

AbsoluteLayout
This class is a layout manager, and handles the positioning of components using the AbsoluteConstraints class. Like the class above, it is not original code and is provided with the program under the terms of the Sun Public License (http://java.sun.com/spl.html), so cannot be changed.

Card
This class represents individual playing cards, which have a suit from 0 to 3 (representing Spades, Hearts, Clubs and Diamonds) and a value from 1 to 13. Both of these attributes are stored as integers so that constraints on cards being added to piles can be dealt with mathematically. However, when represented as a String, the suits and face card values are converted back into a form more recognisable to the user.

Two methods are provided to draw cards - one a simple view using a suit icon and text for the value, and the other using an image file to represent the card. Both of these methods are used by the Desktop class, depending on the option selected by the user.

Cards form the basis of Solitaire games, and changes to this class will affect virtually all of the rest of the system.

Desktop
The Desktop class is added to the main GUI by Game. It is an extension of JPanel, and provides a space for laying out a representation of a Solitaire game.

When a new instantiation of the class is being constructed, the provided state is read along with the preference of the user as to whether the state should be drawn in the original simple form or the full card view. Depending on this preference, one of the two “drawPiles…” methods are called by the constructor.

Updates to one method for drawing cards do not have to be reflected in the other, though consistency in the general layout of cards by both the methods would be advisable. Both of them use a similar procedure, differing mainly in the method of the Card class called to retrieve a JLabel for the cards in the state and the way of handling large piles. The drawPiles method only shows the top 25 cards on a pile, while the drawPilesWithCards method reduces the space between each card to allow the pile to fit in the window.

FileFilter
FileFilter is an extension of the FileFilter class in javax.swing, and is used by the JFileChooser called when the “Open” option is selected by the user. Its purpose is to filter out all files except those that have the extension “.xml”, providing a less cluttered view of files to the user. If for any reason the expected extension of specification files changes, this class will have to be updated.

Game
This is the class that handles interaction with the user and has the responsibility of drawing the on-screen GUI. It is an extension of JFrame - its components are instantiated as attributes and assigned values and ActionListeners during the initComponents method, which is called by the constructor.

Most of the methods in this class are private event handlers. The user can either play through a game manually or invoke the Solver from the interface, stepping back and forward through visited states at any time.

attemptMove is the method used to attempt a move on the currently displayed state. After checking that the attempted move involves removing a card from a valid source pile and adding it to a valid target pile, it adds the resultant state to the solution path and updates the desktop to reflect the changes. (Invalid moves are reported as non-empty Strings by the State and Pile classes.) A check for all cards beingin foundation piles is also run in this method, to report to the user when a game has been successfully completed.

suggestMoves is another method which is often run - it iterates through all possible moves in the current state by attempting all possible combinations of source and target piles, and fills a combo box with the resultant list of valid moves. It calls findValidMoves, an iterative method that calls the same sections of code as the attemptMove method described above.

When the “Solve” button is pressed, a Solver is invoked in a separate thread so that user interaction can continue while it is running. The current state and user-defined depth bound are passed to the Solver’s constructor.

Interpreter
The Interpreter class has the purpose of parsing XML documents and converting them into a form that the Game class can use (a State class is passed back after interpretation). The interpretation of XML files is performed by a large “setupGame” method that performs, in sequence:

· Retrieval of the game name and number of decks to use

· Retrieval of the piles to be used in the game and their properties

· Reading of the tactics to be used by the Solver in solving the game

· Dealing any fixed cards, as specified

· Removing the fixed cards from the pack

· Shuffling of the remaining cards

· Filling any Stock piles that are present

· Dealing of the remaining cards into the dealable piles

Further details of the functionality of this method are provided in the full Project Report.

It is possible that in future development of the software, the expected contents of the specification files will change - either in the attributes (such as specification of new Pile properties) or the elements themselves. Each time the expected collection of attributes or elements changes, the Interpreter will have to be updated to handle them.

Main

The Main class handles the initial setup of a game by calling the Interpreter and Game classes - its only unique functionality is the handling of command line parameters. When a valid file is specified as the first parameter, it sets up the first state as a random deal of the given game instead of the default initial slide.

Move

A Move is a representation of a single move, and contains the ID numbers of the source and target piles along with a copy of the card that was moved (to be shown in the solution path). It also has the “priority” attribute, which is used by some of the game tactics to futher prioritize the available moves.

The Move class should be sufficient for all games in which one card is moved at a time, but will have to be changed to allow for the capability to move stacked sequences.

Pile

Piles represent collections of cards, and have sets of rules as to the cards that can be added to or removed from them during the course of a game. These rules are specified as attributes of the class, and are set in the constructor. This constructor would have to be changed to accommodate any new attributes if the system were to be extended to cope with new rules.

Other methods that would have to be changed are the comparator methods - isEquivalent, compareTo, and equalsByContents. The first two methods rely on comparing the attributes of Pile classes, and all attributes have to be considered if the comparison is to be accurate.

The code that prevents the rules of the Pile from being broken is included in the canAddCard and canRemoveCard methods. These sections of code determine whether or not a card can be added to or removed from the pile - in the case of canAddCard, returning a String to describe the problem encountered if the proposed move is unsuccessful. These methods will also have to be updated to reflect any changes made to the attributes held by an instantiation of the class.

Solver
The Solver’s functionality is detailed in the main Project Report. It examines the possible moves from the root state, then performs them and adds them to a collection of states to explore (a StateStack). The first state is then removed from this collection and the process is repeated until a goal state is found, available memory is exhausted or no further moves are possible.

It also utilizes a Hashtable to store the previously visited states, allowing fast checking for states that are duplicates of ones that have already been considered. This prevents infinite loops from arising and reduces the size of the search tree.

As long as the Move, State and Pile classes are updated to handle solvable games, few extensions are foreseen to be necessary to the Solver class. However, it would be advantageous if a more efficient way of storing states is found, or an otherwise faster method for exploring the generated path tree.

State
A State is a collection of Piles with Cards, and describes the layout at one point during a game of Solitaire. A linear store of States is used to allow the user to step backwards and forwards through a game, and the solver builds a tree of States in its attempt to find a solution.

performMove is the most significant method for changing a state (normally a state will be copied before it is changed, so that a path can be built up, and a method is provided for this). This moves the top card from the given source pile and adds it to the target pile.

It is necessary for a move to be checked against the canPerformMove method before it is performed. This method tests two criteria: whether the given source pile can have its top card removed, and whether that top card can be added to the target pile. If both of these are true, then the move can be performed.

The other methods in this class are provided to assist the Solver. States frequently have to be compared to verify whether they are identical, either directly or by sorting them and reducing them to a hash value. Other shortcut methods are also provided to assess the value of a state, such as counting the number of cards in foundations.

“findValidMoves” and “prioritize” are used to determine the valid moves from a state and the order in which they should be tried. These methods are called by the “suggestmoves” method in the Game class described above - the piles of a state are iterated through, and the resultant valid moves sorted according to the priorities given by the tactics associated with the state.

StateStack
This is a simple class that holds a collection of states for later use by the Solver, in the form of a LinkedList. It is not a strict Stack data type as items can be removed from both ends - normally items are taken from the front end of the LinkedList, but when the list exceeds one thousand items, states at the end are discarded in order to conserve memory.

The StateStack is a simple class, but modifying the method by which states are removed would have a dramatic effect on the performance of the Solver.

StateWriter
This class is called through the Debug menu of the GUI. Its purpose is to write the details of the currently displayed state to an XML file named “!dump.xml” in the folder from which the system is run. By doing this, a user can effectively store a state for future use. However, only the current state is stored - the solution path is discarded.

Changes to any attribute of the State or Pile classes will result in the StateWriter having to be updated to handle these changes. In particular, accurately saving the properties of all Piles in the game is vital, so the writeState method must be kept updated to handle all the possibilities.

II. Likely Changes to the System

Imported Packages

The system imports classes from the following packages:

· java.awt

· java.io

· java.util

· javax.swing

· javax.xml

· org.w3c.dom

· org.xml.sax

If the contents of these packages are changed in future revisions of Java, the system will have to be updated to reflect these changes.

In particular, it is likely that the system may have to be updated to conform to new methods of parsing XML. The entire interpretation is carried out by the setupGame method of the Interpreter class.

The system also uses two classes that are not original but are used in accordance with the Sun Public Licence: AbsoluteConstraints and AbsoluteLayout, which handle the positioning of components in the GUI. If the licence for the use of these classes changes, they will have to be replaced.

Extensions to the Games Handled by the System
The system allows additional games to be written by adding new XML specification files to the working directory of the program (guidelines for writing these files are provided in the User Guide). In many cases, no changes to the code will be necessary, but to extend the range of specifiable games, the available properties for piles may have to be extended.

To allow a greater range of games to be solved (or to improve the ability of the program to solve existing games), it will be necessary to add new tactics to the system.

Therefore, the most likely updates to the system will be the addition of new tactics and new pile properties to allow a greater number of games to be specified and solved.
The system places no constraints on the tactics that can be entered in the XML specification file, but will ignore any that are not recognised. The only section of code that has to be updated to add new tactics is the “prioritize” method in the State class.

This method repeatedly checks the name of the passed tactic against the hard-coded names until a match is found. In each case, the system must check to see if the currently examined move (“examinedmove”) matches the criteria implied by the tactic, and add it to the matched moves list “matchedmoves” if it does. At the same time removing it from the unsorted list of moves “moves”. The last part of each tactic check should be a continue command, to prevent processing time being wasted by more comparisons.

The addition of pile properties is a slightly more complex task, and involves changes to the interpreter as well as the Pile class itself.

The Interpreter class reads a list of expected properties for piles, applying default values to them if they are not found in the specification file. An expected property should be added in the form “{int/boolean} [property name] = {intRead/booleanRead}(piledata, “[property name]”, [default value]”. Each line similar to this will attempt to read the named property from the currently examined pile specification, and apply the supplied default value to the property if it is not found.

Once the property has been read from the XML file, it will usually have to be passed to the constructor of the Pile class (exceptions arise when the property of the pile does not have to be retained past the dealing phase). To add an expected property to the Pile class, its constructor must be changed to incorporate any additional values that are passed to it. Calls to this constructor are made in the Interpreter class (after the properties of a new Pile have been read) and in the State class (in the “copy” method).

Once a property has been added to the Pile class, the class will also have to be updated to take account of the new property. This will usually involve additions to the canAddCard() method, as pile properties place constraints on the types of cards that can be added to the pile.

This method takes the form of a list of conditions, each of which test one of the object’s attributes and whether the passed card matches the set of criteria associated with it. The conditions should be kept in order of complexity, as this prevents complex calculations being performed before a simple property is checked and found to prevent a move being made. Each condition should return a String containing an explanation of why a move could not be made if the card being added and the property being tested are found to conflict.

When a property is added to the Pile class, it may also be necessary to change the way that piles are sorted within states (when the solver is run, states are stored with piles sorted depending on their properties rather than their ID numbers). This sorting is done by the “isequivalent” and “compareTo” methods. Both of them compare various attributes of piles in turn, and distinguish between piles that match and do not match. New attributes of the class should be added to the list of attributes to compare.

Changes to the Solver and Move System

The core of the Solver’s functionality is contained in the Solver class itself, but it does rely on methods that determine whether moves are valid or not in the State and Pile classes.

The main part of the Solver is the section marked “Main solving loop” in the solveGame method. This is the section of code that gathers the list of valid moves from a state and converts them to new states, with the currently examined state as their parent. It also places new valid moves from a state onto the StateStack as it explores them – to alter the general search method, the “add” method of the StateStack class should be altered. Currently, it uses a depth-first approach – new states are added to the stack at the top, so they are the first to be withdrawn from it.

“findValidMoves” is the method in the State class that the Solver uses to determine the moves that it can make from each state. It is also used by the move suggest feature accessible from the GUI. The method cycles through each possible pair of piles in the state (the first being the source pile and the second being the target), recording whether the moves are valid or not. It ignores combinations in which the source and target piles are the same, and moves which have a target other than 0 when the source is a stock pile.

To find the valid moves in a state, the method tests whether the top card can be removed from the source pile (or whether it is a stock), and whether the card currently at the top of the source pile can be added to the target pile. These two checks are done by the canAddCard and canRemoveCard methods in the Pile class, which should be updated to reflect the properties specifiable in piles as described in the section above.

In each of the mentioned sections of code, moves are specified with the Move class. This contains two integers to indicate the ID numbers of the source and target piles, a copy of the card to be moved, and a “priority” integer, used in determining the priority of the move in examining some tactics.

Alterations to the GUI

The sections of code that relate to the GUI are the “Game” and “Desktop” classes. “Desktop” lays out the cards in an extension of the JPanel class, and Game deals with the on-screen controls to be manipulated by the user.

All components to be added to Game (which is an extension of the JFrame class) are specified as attributes, and set up in the “initComponents” method. All of them use the AbsoluteLayout and AbsoluteConstraints classes to specify their position in the window, in the form ([x position], [y position], [x size], [y size]). If new components are to be added, care must be taken to prevent clashes with ones that already exist.

Currently, two methods are used to draw cards on the Desktop – drawPiles and drawPilesWithCards. The method to use is determined by the boolean passed to the Desktop when it is first instantiated, and this way of specifying the layout method would have to be changed if more layout options were to be included. However, the two methods are entirely independent and do not have to be updated to reflect changes made in the other method.

2

