David Newton
CS4099 User Guide
2006


CS4099 Major Software Project:

Solitaire Specification, Simulation and Solution System

User Guide

[image: image19.png]
David Newton

University of St Andrews

Contents

	I. Running the Program
	3

	II. The GUI
	4

	1. The Desktop

2. Card Movement

3. Move Suggester

4. Solver Buttons

5. The Solution Path

6. Solution Path Navigation

7. The Game Menu

8. The Solver Menu

9. The Debug Menu

10. Card View

III. Using the Solver
	4

4

5

6

6

6

7

7

8

9

10

	1. Starting the Solver

2. Solution Progress

3. Solver Outcomes

4. Retrieving the Solution

5. Solver Advice

IV. Specifying Games
	10

10

11

13

13

14

	1. Example XML File

2. The Game Element

3. The Piles Element

4. The Fixedcards Element

5. The Tactics Element
	14

15

16

17

18


I. Running the Program

The “Solitaire Specification, Simulation and Solution System” is written in Java 1.4.2, and should therefore be runnable on all systems that support this environment.

A batch file (“run.bat”) has been provided for running the program under the Windows operating system. On other systems, the command

java -cp ./build/classes cs4099.Main

should be entered from the command prompt (assuming the provided directory layout is kept).

An XML file can be specified as a command line parameter, either to the java command or to the provided batch file (e.g. run.bat ./xmls/brigade.xml). If a valid file is given, the program will perform a deal of the specified game. If the file cannot be found, or no parameter is given, the program will begin with a blank state.

[image: image1.jpg]From here, the Open menu should be used to select a game to interpret, as explained in the “GUI” section.

II. The GUI

When a game is in progress, the appearance of the program will resemble this diagram.

[image: image18.png]1. The Desktop

This is the area that displays the layout of cards. They are arranged in numbered piles, with stock piles being denoted by the letter S and foundation (goal) piles being indicated by asterisks. The objective of each game is to move all cards to the foundations while adhering to all restrictions imposed by the individual piles.

2. Card Movement

Cards can be moved in two ways. The first of these is by entering the numbers of the piles to move from and to in the text fields, and clicking the Move button. If a move cannot be performed, a window will be displayed explaining why.

[image: image2.png]
To unstock from a Stock pile, any valid pile number can be entered into the “To” field. The number chosen will not affect the move, as stock piles can only move into a fixed set of piles.

3. Move Suggester

The alternative, faster way of moving cards is by using the Move Suggester. When the “Suggest” checkbox is activated, the combo box beneath the From and To fields will display a list of possible moves from the current position. The moves are sorted according to the tactics specified for the game, with the move that is deemed the best selected by default. When a move is selected from the list, its source and destination piles will be entered automatically into the From and To fields, and the move can be executed by using the Move button as before.

[image: image3.png]
If the Suggest checkbox is activated and the current position offers no possible moves, then an alert window will appear. From positions such as these, the only option is to go back to an earlier state and try a different route. 

4. Solver Buttons

These buttons are for interaction with the Solver, and will be discussed in the Solver section below.

5. The Solution Path

This area shows the list of moves that have been made to reach the current displayed position. When a move is made, it will be added to the end of the list if the highlight is at the end of the list. If the highlight is further back and a move is made that does not match the next move, the move made will replace the contents of the list from the highlight forwards.

6. Solution Path Navigation

[image: image4.png]
Four buttons are provided to navigate through the generated solution path. The first of these returns the game to the state in which it began, but preserves the solution path made so far. The Forward and Back buttons step through the list either one move forward or back. The “Play” button will automatically play through the game until the end of the solution path is reached, at a speed set by the user.

[image: image5.png]
The speed at which the moves are played through is set by specifying the number of milliseconds to delay in between each move. A value of 300 is usually enough to provide a clear picture of each move as it passes.

7. The Game Menu

This menu provides options for manipulating and replacing the game in progress.

[image: image6.png]
The “Open” menu will open a file dialog that allows the selection of another XML specification file. If this file is valid, a randomly dealt game will replace the current contents of the Desktop.

If there is a problem with the XML file, the following error message may be displayed. If this occurs, the number of cards to deal in the specification file should be checked - the total number of dealt cards (both fixed and in the “cardstodeal” properties of piles) should not exceed the number suggested by the “decks” property (which by default is 1, resulting in an expected number of 52 cards).

[image: image7.png]
The “Restart” option will move the game to the initial state in the same way as the “Top” button on the solution path navigation, but will also discard the entire solution path so far. “Redeal” also does this, but performs a new random deal of the game rather than simply restarting the same one.

Selecting “Exit” will end the program.

8. The Solver Menu

[image: image8.png]
This menu contains the same options as the collection of Solver buttons, and will be discussed in the next section.

9. The Debug Menu

[image: image9.png]
This menu provides options that are not normally used in running a game, but which can be helpful in providing additional information on the data held by the system.

The “State Info” option will display a window showing the hash value of the current state, the state depth and total depth of the solution path, and the tactics that have been read by the interpreter to assist the solver in solving the game.

“Dump state” will output the current state to a file named “!dump.xml” in the folder from which the program was executed - this file can be opened in the same way as any other XML specification file, and can be renamed in order to prevent it from being overwritten the next time this option is selected. The solution list is not saved along with the state - this option was intended for saving specific deals of games rather than having to specify them by hand.

10. Card View

Selecting this checkbox will result in the Desktop showing graphical representations of cards rather than using the default plain view. This view is closer to the standard representation used by computer-based card games, but can appear cluttered in large games so has been left off by default.

[image: image10.png]
III. Using the Solver
1. Starting the Solver

The Solver can be started from two areas of the GUI - either the collection of buttons at the lower right of the Desktop, or through the Solver menu. Both areas provide the same functionality.

To search for solutions to the game from the currently displayed state, either click the “Solve” button or select the same option from the menu.

[image: image11.png]
A prompt for the maximum search depth will be displayed - this is the maximum number of moves that the solver will attempt before backtracking and trying an alternative route to the solution. Normally this can be left at the default of 500, but for games which involve multiple decks the value may have to be increased.

The option to limit the depth of the search was included as a safeguard against games where very similar (though not identical) states can be repeatedly attempted, resulting in the solver providing no solution.

2. Solution Progress


While running, the solver will display a window similar to the following.

[image: image12.png]
The solver operates by considering a stack of possible states, and adding states to a path tree as they are examined. The displayed depth is the number of moves that the solver has made on the current solution path.

“Examined states” shows the number of states in the entire path tree - this value will continue to increase until a solution is found or memory is exhausted. “Enqueued states” shows the number of possible moves that are left on the stack - if this reaches zero, the solver has run out of possible moves and the game is unsolvable from the current position.

The “best state” value shows how close the solver is to arriving at a solution - the figure displayed shows the maximum number of cards that the solver has succeeded in placing on foundation piles. Once this number is equal to the number of cards in the game, the game will be solved.

3. Solver Outcomes

There are four possible outcomes for the solver - a window will be displayed in each case.

If a successful solution path is generated, a window reporting the number of moves in the path will be shown.

[image: image13.png]
If there are no more possible moves (the stack of new states is exhausted), then the solver will conclude that no solution is possible.

[image: image14.png]
In the event that the state tree becomes too large for available memory, the solver will abandon its attempt.

[image: image15.png]
The solver can also be cancelled by the user at any time by using the Cancel button/menu item, if it appears that no progress is being made.

[image: image16.png]
4. Retrieving the Solution

In all cases, the solver will finish with a solution path available (though the path will only actually lead to a goal state in the first case). To copy the path generated by the solver into the solution list in the main window, the Retrieve button/menu item should be selected. This will fill the list with the moves made by the solver, and they can then be navigated in the same way as moves that were made by the user.

5. Solver Advice

If the solver reports that there is no solution and the current state is not the first in the solution path, it may help to move back a few steps in the solution path to open up more possibilities for the solver to consider.

The solver may run out of memory when attempting to solve a game, especially when it is started from the initial state. Performing a few moves manually can help to prevent this, as this will greatly reduce the size of the search tree.

IV. Specifying Games

1. Example XML File

The XML files for use with this system should be written as a Game element that encapsulates three other elements – Piles, FixedCards and Tactics. An example is provided below (it is a copy of the file “simple.xml”).

<?xml version="1.0" encoding="UTF-8"?>

<game name="Example" decks="1">

<piles>

<pile id="0" isfoundation="true" capacity="13" addable="true" samesuit="true" displayx="200" displayy="40" straightstack="true" />

<pile id="1" isfoundation="true" capacity="13" addable="true" samesuit="true" displayx="300" displayy="40" straightstack="true" />

<pile id="2" isfoundation="true" capacity="13" addable="true" samesuit="true" displayx="400" displayy="40" straightstack="true" />

<pile id="3" isfoundation="true" capacity="13" addable="true" samesuit="true" displayx="500" displayy="40" straightstack="true" />

<pile id="4" removable="true" cardstodeal="12" displayx="200" displayy="100" />

<pile id="5" removable="true" cardstodeal="12" displayx="300" displayy="100" />

<pile id="6" removable="true" cardstodeal="12" displayx="400" displayy="100" />

<pile id="7" removable="true" cardstodeal="12" displayx="500" displayy="100" />

</piles>

<fixedcards>

<card pile="4" suit="0" value="13"/>

<card pile="5" suit="1" value="13"/>

<card pile="6" suit="2" value="13"/>

<card pile="7" suit="3" value="13"/>

</fixedcards>

<tactics>

<tactic name="dontstartnewfoundations"/>

</tactics>

</game>
This example specification will result in a game being dealt similar to the position shown below.

[image: image17.png]
This game has very simple rules, and can be solved with no difficulty – each foundation pile accepts cards of one suit in no fixed order, so cards can simply be placed in turn on them. As long as two foundations do not hold cards of the same suit, the game can always be solved in exactly 52 moves regardless of the order in which the cards are moved up. The actual rules are defined in the “pile” elements, which are explained further below.

2. The Game Element

The Game element encapsulates all other elements in the file. Two attributes are specifiable – “Name”, which specifies the name of the game to be shown in the title bar when the file is opened, and “Decks”, the number of 52-card decks to use while dealing the game. If the “Decks” attribute is omitted, one deck is assumed.

Within the Game element, three sub-elements must be defined – “Piles”, “FixedCards” and “Tactics”.

3. The Piles Element

The piles to be used in the game are specified in the “Piles” element as separate “Pile” elements. Each of these may have a number of attributes, each of which alters a property of the pile when the game is running. If an attribute is omitted or has an invalid value, the pile will assume the default behaviour.

This is a complete list of all attributes that are specifiable in the Pile elements. They fall into two types – Game, which alter the rules of the pile, and Display, which affect how it is displayed on-screen.

Game Properties
	Type
	Name
	Description
	Def.

	Int
	Id
	The identification number of the pile. These should be entered sequentially starting from 0.
	0

	Int
	Capacity
	The maximum number of cards to be accepted on the pile (the size of the array that describes the pile’s contents). The default is set to 52 to impose no restriction. If the pile is a Stock, it will be filled to capacity when the game starts.
	52

	Int
	Order
	The sequence in which cards must be laid. The most common is –1, which indicates that cards must be placed in descending order on the pile. A value of 0 implies no order restriction.
	0

	Int
	Uniquesuit
	Used only rarely (and usually on foundation piles), this attribute restricts a pile to holding only one suit of card (0 to 3, or -1 if there is no restriction).
	-1

	Boolean
	Alternatecolours
	If this is set to true, cards must be laid on top of each other in alternate colours on this pile (as in Klondike and Freecell).
	False

	Boolean
	Samesuit
	Cards on this pile must all be of the same suit. This is similar to the “uniquesuit” attribute, but does not impose a restriction on which specific suit the cards belong to.
	False

	Boolean
	Addable
	Cards can be added to this pile. Most piles in the tableau and foundations should have this set to “true” – if it is false, no cards can be added to the pile regardless of other restrictions.
	False

	Boolean
	Removable
	Cards can be removed from this pile. This is usually set to true for all piles except foundations and stocks.
	False

	Boolean
	IsFoundation
	The pile is a foundation – a goal pile for cards. At least one pile must have this property, or the game will be unsolvable.
	False

	Boolean
	Fourteen
	When the number of cards on the pile is even, the sum of their values must be a multiple of fourteen.
	False

	Boolean
	IsStock
	The pile is a stock pile – special properties apply to this pile that make moves from it deal into specific piles.
	False

	Int
	StockCapacity
	The number of cards to remove from a Stock pile when a move is made from it. This property is ignored if IsStock is set to false.
	0

	Int
	StockNumber
	The ID number of the stock pile that deals into this pile, if any (-1 if there is none).
	-1

	Int
	StartValue
	The value that a card must be to be placed on this pile when no other cards are on it (again, 0 implies no restriction). This is often set to 0 or 13 (King) for the tableau, and 1 (Ace) for foundations.
	0

	Boolean
	OneAway
	This is a property that was written specifically for Black Hole, in which sequential cards must have a value that is one away from the previous card in either direction (with wrapping between Aces and Kings allowed). If this property is set, order should be set at 0.
	False

	Boolean
	OneAwayNoWrap
	The same as the above, but with wrapping disallowed.
	False

	Int
	CardsToDeal
	The number of cards to deal into this pile at the start of a game (different from the FixedCards specified later on, as these will be cards dealt at random from the deck). Stock piles do not use this attribute - instead, they are filled to Capacity.
	0

	Boolean
	BuryKings
	If true, this indicates that any cards of rank King should be sent to the back of the pile during the dealing phase.
	False


Display Properties
	Type
	Name
	Description
	Def.

	Int
	DisplayX
	The X co-ordinate for the location to start the pile on-screen.
	0

	Int
	DisplayY
	The Y co-ordinate for the location to start the pile on-screen.
	0

	Boolean
	Straightstack
	This property affects how the cards in the pile are displayed – if it is set to False, all the cards in the stack will be displayed in sequence (unless the pile has over 30 cards – in this case, only the top 30 are shown, as this is the maximum number that will fit in the window). If true, the pile will only ever show its top card. This behaviour is useful for foundations.
	False

	Boolean
	Backwards
	Intended for use with games that build foundations in two directions (such as Bisley). Setting this property to “true” makes the GUI draw the pile from the bottom up instead of top-down.
	False


4. The Fixedcards Element

The “fixedcards” element of the XML file is examined first, and specifies any specific cards that have to be dealt to piles before the main shuffle and deal of the pack begins. In the example provided above, all the Kings are dealt to the lowest position on each of the four tableau piles.

Fixed cards are specified as “card” elements, each of which has “pile”, “suit” and “value” atrributes. The “pile” attribute should be the ID number of the pile on which to place the card. “Value” and “suit” behave as would be expected – they specify the numerical value and suit (0 = Spades, 1 = Hearts, 2 = Clubs, 3 = Diamonds) of the card to deal.

After the fixed cards are dealt, the remainder of the pack is distributed among the piles according to their “cardstodeal” properties. The total number of cards in a game must equal the number implied by the “decks” attribute of the Game element – 52 cards for every deck used – otherwise the game will fail to deal.

5. The Tactics Element

The last element of the file holds the tactics that a solver should use while attempting to place all cards into the goal piles. Tactics are examined from the top down, with possible moves from each position being tried in sequence depending on the first tactic that they match.

Each tactic should be specified as a “Tactic” element within the “Tactics” element, and must have one attribute – the name, which has to match one of the names of tactics given in the list below.

	Tactic Name
	Prioritizes moves with these properties

	movetofoundations
	Moves that move cards into foundation piles.

	uncoverrequired
	Moves that bring cards needed on the foundations closer to the front.

	keepfreecells
	Moves that do not fill empty free cells (piles of length 1).

	moveuponfoundations
	Moves that increase the value of the top card of a foundation. This is only applicable for games in which a foundation pile can be built in either direction (e.g. Black Hole).

	samedirection
	Moves that continue moving the numerical value of a foundation in the same way that it was previously moved (e.g. if the top card on a foundation is a Six and the next to top is a Five, this tactic would prioritize placing a Seven on the foundation). This tactic is similar to the one above.

	avoidleavingspaces
	Moves that do not create new empty spaces by moving the last card off a pile.

	dontstartnewfoundations
	Moves that place cards on foundations that are already filled rather than those that fill empty foundations.

	unstock
	Moves that involve dealing cards out of a Stock pile.













































































16

